APS Logo

Flow-induced compaction of visco-elastic and visco-plastic soft porous media

ORAL

Abstract

The flow of viscous fluid through a soft porous medium exerts drag on the matrix and induces non-uniform deformation. This behaviour can become increasingly complicated when the medium has a complex rheology, such that deformations exhibit elastic (reversible) and plastic (irreversible) behaviour, or when the rheology has a viscous component, making the response of the medium rate dependent. This is perhaps particularly the case when compaction is repeated over many cycles, or when additional forces (e.g. gravity or an external load) act simultaneously with flow to compact the medium, as in many industrial and geophysical applications. Here, we explore the interaction of viscous effects with elastic and plastic media from a theoretical standpoint, focussing on unidirectional compaction. We initially consider how the medium responds to the reversal of flow forcing when some of its initial deformation is non-recoverable. More generally, we explore how spatial variations in stress arising from fluid flow interact with the stress history of the sample when some element of its rheology is plastic and rate-dependent, and characterise the response of the medium depending on the nature of its constitutive laws.

Presenters

  • Emma Bouckley

    Univ of Cambridge

Authors

  • Emma Bouckley

    Univ of Cambridge

  • Duncan R Hewitt

    Univ of Cambridge, University of Cambridge