Low-Order Modeling and Machine Learning in Fluid Dynamics: Other Applications II
FOCUS · ZC11 · ID: 2665114
Presentations
-
Adaptive Physics-Informed Learning for Downscaling Fluid Flows over Irregular Geometries
ORAL
–
Presenters
-
Thi Nguyen Khoa Nguyen
CEA DAM lle-de-France
Authors
-
Thi Nguyen Khoa Nguyen
CEA DAM lle-de-France
-
Christophe Millet
CEA, DAM, DIF, F-91297 Arpajon, France
-
Thibault Dairay
Michelin
-
Raphaël Meunier
Michelin
-
Mathilde Mougeot
ENSIIE / ENS Paris-Saclay
-
-
Abstract Withdrawn
ORAL Withdrawn
–
-
Dynamic Mode Decomposition of Wake Flow Structures for Supersonic Oscillating Genesis Atmospheric Entry Capsule
ORAL
–
Publication: [1] Ohmichi, Y., Kobayashi, K. and Kanazaki, M., 2019. Numerical investigation of wake structures of an atmospheric entry capsule by modal analysis. Physics of Fluids, 31(7).
[2] Teramoto, S., Hiraki, K. and Fujii, K., 2001. Numerical analysis of dynamic stability of a reentry capsule at transonic speeds. AIAA journal, 39(4), pp.646-653.
[3] Kazemba, C.D., Braun, R.D., Schoenenberger, M. and Clark, I.G., 2015. Dynamic stability analysis of blunt-body entry vehicles using time-lagged aftbody pitching moments. Journal of Spacecraft and Rockets, 52(2), pp.393-403.
[4] Romeo, S.A.S., Oz, F., Kassem, A., Kara, K. and San, O., 2024. An augmented physics informed neural network approach for blunt-body dynamics. Physics of Fluids, 36(1).
[5] Kobayashi, K., Ohmichi, Y. and Kanazaki, M., 2019. Modal decomposition analysis of subsonic unsteady flow around an atmospheric Entry capsule with forced oscillation. In AIAA Scitech 2019 Forum (p. 1851).
[6] Oz, F., Romeo, S. A. S., Kassem, A., Ekelschot, D., Schulz, J. C., Kazemba, C., San, O., and Kara, K., "Nonlinear Parameter
Estimation for Entry Capsule Dynamic Stability Analysis and Uncertainty Quantification," Journal of Spacecraft and Rockets,
2024. Under Review, 2024-01-A35998.Presenters
-
Ashraf Kassem
Oklahoma State University-Stillwater
Authors
-
Ashraf Kassem
Oklahoma State University-Stillwater
-
Shafi Al Salman Romeo
Oklahoma State University-Stillwater, Oklahoma State University
-
Bipin Tiwari
University of Tennessee-Knoxville
-
Omer San
University of Tennessee
-
Kursat Kara
Oklahoma State University
-
-
Optimizing progress variables for ammonia/hydrogen combustion using encoding-decoding networks
ORAL
–
Publication: Kamila Zdybał, James C. Sutherland, Alessandro Parente - Optimizing progress variables for ammonia/hydrogen combustion using encoding-decoding networks, 2024.
Presenters
-
James Sutherland
University of Utah
Authors
-
Kamila Zdybal
Empa, Swiss Federal Laboratory
-
James Sutherland
University of Utah
-
Alessandro Parente
Université Libre de Bruxelles
-
-
Deep Generative Modeling for Predicting Turbulence Structure in Urban Flows
ORAL
–
Presenters
-
Aakash Patil
Stanford University
Authors
-
Aakash Patil
Stanford University
-
Tomek M Jaroslawski
Stanford Univeristy
-
Beverley J McKeon
Stanford University
-
-
Flow-Informed Path-Planning for Safe Autonomous Flight in Cities
ORAL
–
Presenters
-
Alejandro Stefan-Zavala
Caltech
Authors
-
Alejandro Stefan-Zavala
Caltech
-
Julian Humml
Caltech
-
Peter Ian James Renn
Caltech
-
Morteza Gharib
Caltech
-
-
Deep Learning Strategies for Transport Properties Prediction in Flow Condensation via Acoustic Signatures
ORAL
–
Presenters
-
Dylan Wallen
University of Cincinnati
Authors
-
Ying Sun
University of Cincinnati
-
Dylan Wallen
University of Cincinnati
-
Han Hu
University of Arkansas
-
Christy Dunlap
University of Arkansas
-
-
Quantifying Uncertainty in Groundwater Vulnerability Assessment: a Bayesian Approach
ORAL
–
Publication: [1] National Research Council 1993. Ground Water Vulnerability Assessment: Predicting Relative Contamination Potential Under Conditions of Uncertainty, Washington, DC, The National Academies Press, DOI: doi:10.17226/2050.
[2] Taghavi, N., Niven, R. K., Paull, D. J. & Kramer, M. 2022. Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Science of The Total Environment, 822, 153486 DOI: https://doi.org/10.1016/j.scitotenv.2022.153486.
[3] Mohammad Djafari, A. & Dumitru, M. J. D. S. P. 2015. Bayesian sparse solutions to linear inverse problems with non-stationary noise with Student-t priors. 47, 128-156.Presenters
-
Nasrin Taghavi
University of New South Wales
Authors
-
Nasrin Taghavi
University of New South Wales
-
Robert K Niven
University of New South Wales
-
David J Paull
University of New South Wales
-
Matthias Kramer
University of New South Wales
-
-
Predicting swirling flow states in finite-length pipes using physics-informed neural networks
ORAL
–
Presenters
-
Yuxin Zhang
Washington State University
Authors
-
Yuxin Zhang
Washington State University
-
Diego Rangel Monroy
Washington State University
-