Low-Order Modeling and Machine Learning in Fluid Dynamics: Methods VI
ORAL · X12 · ID: 2665352
Presentations
-
Hybrid Auto-Encoder with SVD-like Convergence
ORAL
–
Presenters
-
Nithin Somasekharan
Rensselaer Polytechnic Institute
Authors
-
Nithin Somasekharan
Rensselaer Polytechnic Institute
-
Shaowu Pan
Rensselaer Polytechnic Institute
-
-
Reduced Representations of Turbulent Rayleigh-Bénard Flows via Autoencoders
ORAL
–
Publication: Part of this work was submitted to JFM (Journal of Fluid Mechanics) at May 2024.
Presenters
-
Melisa Y Vinograd
Universidad de San Andrés
Authors
-
Melisa Y Vinograd
Universidad de San Andrés
-
Melisa Y Vinograd
Universidad de San Andrés
-
Patricio Clark Di Leoni
Universidad de San Andrés, Universidad de San Andres
-
-
Data-driven linear analysis of turbulent flows via nonlinearity-subtracted dynamic mode decomposition
ORAL
–
Presenters
-
Benjamin Herrmann
Universidad de Chile
Authors
-
Benjamin Herrmann
Universidad de Chile
-
Katherine Cao
Stanford University
-
Carlos A Gonzalez
Center for Turbulence Research, Stanford University, Stanford University
-
Steven L Brunton
University of Washington
-
Beverley J McKeon
Stanford University
-
-
Dynamic mode decomposition for self-similar dynamics
ORAL
–
Presenters
-
Kevin Chen
University of Edinburgh
Authors
-
Kevin Chen
University of Edinburgh
-
Jacob Page
University of Edinburgh
-
-
A meshless method to compute the POD and its variants from scattered data
ORAL
–
Publication: https://arxiv.org/abs/2407.03173
Presenters
-
Iacopo Tirelli
Department of Aerospace Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, Legan´es, 28911, Madrid, Spain.
Authors
-
Iacopo Tirelli
Department of Aerospace Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, Legan´es, 28911, Madrid, Spain.
-
Miguel A Mendez
Environmental and Applied Fluid Dynamics, von Karman Institute for Fluid Dynamics, Waterloosesteenweg 72, Sint-Genesius-Rode, 1640, Bruxelles, Belgium.
-
Andrea Ianiro
Universidad Carlos III de Madrid, Department of Aerospace Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, Legan´es, 28911, Madrid, Spain.
-
Stefano Discetti
Department of Aerospace Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, Legan´es, 28911, Madrid, Spain., Universidad Carlos III de Madrid
-
-
Non-Gaussian Variational Data Assimilation Embedded Reduced-Order Modeling Methods Through Statistical Error Transformations
ORAL
–
Presenters
-
Muhammad Waleed Khan
University of Kansas
Authors
-
Muhammad Waleed Khan
University of Kansas
-
Cheng Huang
University of Kansas
-
-
Data-driven insights into fluid-structure association and energy quantification
ORAL
–
Publication: Published:
[1] C.Y. Li, Z. Chen, X. Lin, A.U. Weerasuriya, X. Zhang, Y. Fu, T.K.T. Tse, The linear-time-invariance notion to the Koopman analysis: The architecture, pedagogical rendering, and fluid–structure association, Physics of Fluids 34(12), 125136 (2022).
[2] C.Y. Li, Z. Chen, T.K.T. Tse, A.U. Weerasuriya, X. Zhang, Y. Fu, X. Lin, The linear-time-invariance notion of the Koopman analysis. Part 2. Dynamic Koopman modes, physics interpretations and phenomenological analysis of the prism wake, Journal of Fluid Mechanics 959, A15 (2023).
[3] Y. Fu, X. Lin, L. Li, Q. Chu, H. Liu, X. Zheng, C.-H. Liu, Z. Chen, C. Lin, T.K.T. Tse, C.Y. Li, A POD-DMD augmented procedure to isolating dominant flow field features in a street canyon, Physics of Fluids 35(2), 025112 (2023).
Submitted:
[1] C.Y. Li, L. Zhang, S. Li, X. Zhang, Z. Chen, Y. Fu, X. Lin, D.Z. Peng, Y. Wang, B. Zhang, L. Zhou, Y. Wang, H. Liu, A.U. Weerasuriya, T.K.T. Tse, Q. Yang, Linear-time invariance notion to Koopman analysis. Part 3. Data-driven quantification of fluid-structure energy transfers, Physics of Fluids (2024)
[2] X. Lin, D.Z. Peng, T.K.T. Tse, C.Y. Li, Y. Wang, POD-DMD-DFT Augmented Analysis: identify and visualize energy-wise and evolution-wise significant nonlinear flow features, Nonlinear Dynamics (2024)Presenters
-
Cruz Y. Li
School of Civil Engineering, Chongqing University
Authors
-
Cruz Y. Li
School of Civil Engineering, Chongqing University
-
Yunlong Wang
School of Civil Engineering, Liaoning Technical University
-
Shuang Wu
School of Civil Engineering, Liaoning Technical University
-
Xisheng Lin
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology
-
Tim K.T. Tse
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology
-
-
Flow dynamics from flow field measurements and a Galerkin Model.
ORAL
–
Presenters
-
Qihong Lorena L Li Hu
Universidad Carlos III de Madrid
Authors
-
Qihong Lorena L Li Hu
Universidad Carlos III de Madrid
-
Patricia García-Caspueñas
Universidad Carlos III de Madrid
-
Andrea Ianiro
Universidad Carlos III de Madrid, Department of Aerospace Engineering, Universidad Carlos III de Madrid, Avda. Universidad 30, Legan´es, 28911, Madrid, Spain.
-
Stefano Discetti
Universidad Carlos III de Madrid
-
-
A novel LES-augmented machine learning algorithm for turbulent flow and bed morphodynamics prediction in large-scale environments
ORAL
–
Publication: Zhang, Z, Sotiropoulos, F., Khosronejad A., (2024), Toward ultra-efficient high-fidelity prediction of bed morphodynamics of large-scale meandering rivers using a novel LES-trained machine learning approach, In Review.
Presenters
-
Fotis Sotiropoulos
Virginia Commonwealth University
Authors
-
Zexia Zhang
Stony Brook University
-
Fotis Sotiropoulos
Virginia Commonwealth University
-
Ali Khosronejad
Stony Brook University (SUNY)
-
-
ABSTRACT WITHDRAWN
COFFEE_KLATCH
–