Minisymposium: Bayesian Inference for Synthesis of Models and Data in Fluid Mechanics
INVITED · X01 · ID: 2667291
Presentations
-
Foundations of Bayesian Inference and Application to Dynamical System Identification
ORAL · Invited
–
Publication: Niven, R.K., Cordier, L., Mohammad-Djafari, A., Abel, M., Quade, M., Dynamical system identification, model selection and model uncertainty quantification by Bayesian inference, arXiv:2401.16943v2.
Presenters
-
Robert K Niven
University of New South Wales
Authors
-
Robert K Niven
University of New South Wales
-
Laurent Cordier
Univ de Poitiers
-
Ali Mohammad-Djafari
CentraleSupelec, Gif-sur-Yvette, France.
-
Markus Abel
Ambrosys GmbH, Potsdam, Germany
-
Markus Quade
Ambrosys GmbH, Potsdam, Germany
-
-
The Elephant in the Room: Adjoint-accelerated Bayesian Inference into multi-parameter CFD
ORAL · Invited
–
Publication: https://arxiv.org/abs/2406.18464
https://doi.org/10.1109/TIP.2022.3228172
https://doi.org/10.1017/jfm.2022.503Presenters
-
Matthew P Juniper
Univ of Cambridge
Authors
-
Matthew P Juniper
Univ of Cambridge
-
-
Quantification and reduction of RANS model uncertainties through regional Bayesian calibration and model mixtures
ORAL · Invited
–
Presenters
-
Paola Cinnella
Sorbonne Université
Authors
-
Paola Cinnella
Sorbonne Université
-
Cécile Roques
Sorbonne Université and Safran Tech
-
Grégory Dergham
Safran Tech
-
Xavier Merle
Ecole Nationale Supérieure d'Arts et Métiers
-
-
Bayesian-based merging of data assimilation and machine learning to learn unsteady turbulence models from sparse data
ORAL · Invited
–
Publication: Villiers, R., Mons, V., Sipp, D., Lamballais, E., Meldi, M.: Enhancing Unsteady Reynolds-Averaged Navier-Stokes modelling from sparse data through data assimilation and machine learning. To be submitted to Flow, Turbulence and Combustion
Presenters
-
Vincent Mons
DAAA, ONERA, Institut Polytechnique de Paris
Authors
-
Vincent Mons
DAAA, ONERA, Institut Polytechnique de Paris
-
Raphaël Villiers
DAAA, ONERA, Institut Polytechnique de Paris
-
Denis Sipp
DAAA, ONERA, Institut Polytechnique de Paris, Onera
-
Eric Lamballais
Curiosity Group, Pprime Institute, CNRS-Univ-Poitiers-ISAE/ENSMA
-
Marcello Meldi
Univ. Lille, CNRS, ONERA, Arts et Metiers ParisTech, Centrale Lille, UMR 9014- LMFL- Laboratoire de Mecanique des fluides de Lille
-
-
Bayesian model selection for the squeeze flow of soft matter
ORAL · Invited
–
Publication: Rinkens, A., Verhoosel, C. V., & Jaensson, N. O. (2023). Uncertainty quantification for the squeeze flow of generalized Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 322, 105154
Presenters
-
Aricia Rinkens
Eindhoven University of Technology
Authors
-
Aricia Rinkens
Eindhoven University of Technology
-
Clemens V Verhoosel
Eindhoven University of Technology
-
Nick O Jaensson
TU Eindhoven
-
-
Multi-fidelity modeling and uncertainty quantification of heterogeneous roughness
ORAL · Invited
–
Presenters
-
YoungIn Shin
Massachusetts Institute of Technology
Authors
-
YoungIn Shin
Massachusetts Institute of Technology
-
Miles J Chan
California Institute of Technology, Caltech
-
Jianyu Wang
Center for Turbulence Research, Stanford University
-
Tony Zahtila
Stanford University
-
Catherine Gorle
Stanford University
-
Gianluca Iaccarino
Stanford University
-
Michael F Howland
Massachusetts Institute of Technology
-
-
Uncertainty Quantification of Separated Flows Using Bayesian Neural Networks
ORAL · Invited
–
Presenters
-
Tyler S Buchanan
Delft University of Technology
Authors
-
Tyler S Buchanan
Delft University of Technology
-
Richard P Dwight
Delft University of Technology
-
-
Particle filters and stochastic transport models for geophysical data assimilation: localization and scalability
ORAL · Invited
–
Presenters
-
Eliana Fausti
Imperial College London
Authors
-
Eliana Fausti
Imperial College London
-
Dan Crisan
Imperial College London
-