Low-Order Modeling and Machine Learning in Fluid Dynamics: Methods IV
ORAL · R15 · ID: 2665314
Presentations
-
A transformer-based model for grid-agnostic full-field reconstruction of tsunami waves from sparse observations.
ORAL
–
Presenters
-
Edward McDugald
Los Alamos National Laboratory, University of Arizona
Authors
-
Edward McDugald
Los Alamos National Laboratory, University of Arizona
-
Arvind T Mohan
Los Alamos National Laboratory (LANL)
-
Darren Engwirda
Los Alamos National Laboratory
-
Javier Santos
Los Alamos National Laboratory
-
Agnese Marcato
Los Alamos National Lab
-
-
Deep Reduced-Order Modeling for Fluids: The Importance of Autoencoder Initialization and Initial Transient Data
ORAL
–
Presenters
-
Gregory Robert Macchio
Princeton University
Authors
-
Gregory Robert Macchio
Princeton University
-
Clarence W Rowley
Princeton
-
-
Feature-Guided Adaptive Model Order Reduction for Convection-Dominated Problems
ORAL
–
Presenters
-
Ali Mohaghegh
University of Kansas
Authors
-
Ali Mohaghegh
University of Kansas
-
Cheng Huang
University of Kansas
-
-
Linear and nonlinear Granger causality analysis of turbulent flows
ORAL
–
Publication: Lopez-Doriga, Barbara & Atzori, Marco & Vinuesa, Ricardo & Bae, H. Jane & Srivastava, Ankit & Dawson, Scott. (2024). Linear and nonlinear Granger causality analysis of turbulent duct flows. Journal of Physics: Conference Series. 2753. 012017. 10.1088/1742-6596/2753/1/012017.
Presenters
-
Barbara Lopez-Doriga
University of California, Los Angeles
Authors
-
Barbara Lopez-Doriga
University of California, Los Angeles
-
Marco Atzori
Politecnico di Milano
-
Ricardo Vinuesa
KTH Royal Institute of Technology
-
Jane Bae
Caltech, California Institute of Technology
-
Ankit Srivastava
Illinois Institute of Technology
-
Scott T. M. Dawson
Illinois Institute of Technology
-
-
Extracting self-similarity from data
ORAL
–
Publication: arXiv:2407.10724
Presenters
-
Kostas Steiros
Imperial College London
Authors
-
Nikolaos Bempedelis
Queen Mary University of London
-
Luca Magri
Imperial College London, The Alan Turing Institute, PoliTo, Imperial College London, Alan Turing Institute, Politecnico di Torino, Imperial College London, Alan Turing Institute
-
Kostas Steiros
Imperial College London
-
-
Neural Inference of Fluid–Structure Interactions from Lagrangian Particle Tracks
ORAL
–
Presenters
-
Rui Tang
The Pennsylvania State University
Authors
-
Rui Tang
The Pennsylvania State University
-
Ke Zhou
Pennsylvania State University
-
Samuel J Grauer
Pennsylvania State University
-
jifu tan
Northern Illinois University
-
-
Physics-Constrained Forecasting of Fluid Dynamics with Reservoir Computing
ORAL
–
Presenters
-
Dima Tretiak
University of Washington
Authors
-
Dima Tretiak
University of Washington
-
Anastasia Bizyaeva
Cornell University
-
J. Nathan Kutz
University of Washington, University of Washington, AI Institute for Dynamic Systems
-
Steven L Brunton
University of Washington
-
-
Combined autoencoder and clustering-based approach to investigate extreme events in turbulent flows
ORAL
–
Presenters
-
Nguyen Anh Khoa Doan
Delft University of Technology
Authors
-
Nguyen Anh Khoa Doan
Delft University of Technology
-
Luca Magri
Imperial College London, The Alan Turing Institute, PoliTo, Imperial College London, Alan Turing Institute, Politecnico di Torino, Imperial College London, Alan Turing Institute
-