Low-Order Modeling and Machine Learning in Fluid Dynamics: General II
ORAL · L12 · ID: 2665192
Presentations
-
Latent Diffusion Models for Partial Differential Equations Modeling
ORAL
–
Presenters
-
Anthony Zhou
Carnegie Mellon University
Authors
-
Anthony Zhou
Carnegie Mellon University
-
Amir Barati farimani
Carnegie Mellon University
-
-
Pretraining a Neural Operator in Lower Dimensions
ORAL
–
Presenters
-
AmirPouya Hemmasian
Carnegie Mellon University
Authors
-
AmirPouya Hemmasian
Carnegie Mellon University
-
Amir Barati farimani
Carnegie Mellon University
-
-
A Multi-Modal Implicit Neural Representation Method for Dimension Reduction of Spatiotemporal Flow Data
ORAL
–
Presenters
-
Pan Du
University of Notre Dame
Authors
-
Pan Du
University of Notre Dame
-
Jian-Xun Wang
University of Notre Dame
-
-
Physics-Constrained Coupled Neural Differential Equations: Application to 1D Blood Flow Modeling
ORAL
–
Presenters
-
Hunor Csala
University of Utah
Authors
-
Hunor Csala
University of Utah
-
Arvind T Mohan
Los Alamos National Laboratory (LANL)
-
Daniel Livescu
Los Alamos National Laboratory (LANL)
-
Amirhossein Arzani
University of Utah
-
-
Machine Learning-Driven Inverse Fluid-Structure Interaction (FSI) Simulations of the Heart
ORAL
–
Presenters
-
Hossein Geshani
Texas A&M University College Station
Authors
-
Hossein Geshani
Texas A&M University College Station
-
Iman Borazjani
Texas A&M University College Station, Texas A&M University, College Station
-
-
Diff-FlowFSI: A GPU-accelerated, JAX-based Differentiable CFD Solver for Turbulent Flow and Fluid-Structure Interactions
ORAL
–
Presenters
-
Xinyang Liu
University of Notre Dame
Authors
-
Xiantao Fan
University of Notre Dame
-
Xinyang Liu
University of Notre Dame
-
Meng Wang
University of Notre Dame
-
Jian-Xun Wang
University of Notre Dame
-
-
Box model for colliding turbidity currents via equation discovery methods
ORAL
–
Presenters
-
Nathan Willis
University of California, Merced
Authors
-
Nathan Willis
University of California, Merced
-
Francois Blanchette
University of California, Merced
-
Conor Olive
University of California, Merced
-
-
Abstract Withdrawn
ORAL Withdrawn
–
-
Real-time prediction of turbulent flow using physics-informed neural networks with coarse spatiotemporal data
ORAL
–
Presenters
-
Jinhyeok Yun
Pusan National University
Authors
-
Jinhyeok Yun
Pusan National University
-
Seongbeom Park
Pusan National University
-
Dowon Kim
Pusan National University
-
-
Conjugate Gradient Greedy Identification of Latent Dynamics from Parametric Flow Data.
ORAL
–
Presenters
-
Rama AYOUB
King Abdullah Univ of Sci & Tech (KAUST)
Authors
-
Rama AYOUB
King Abdullah Univ of Sci & Tech (KAUST)
-
Mourad Oulghelou
Sorbonne University
-
Peter J Schmid
King Abdullah University of Science and Technology, King Abdullah Univ of Sci & Tech (KAUST)
-