Multi-fidelity uncertainty-aware coronary hemodynamics personalized by CT myocardial perfusion imaging
POSTER
Abstract
Publication: K. Menon, M.O. Khan, Z.A. Sexton, J. Richter, P.K. Nguyen, S.B. Malik, J. Boyd, K. Nieman, A.L. Marsden. "Personalized coronary and myocardial blood flow models incorporating CT perfusion imaging and synthetic vascular trees." npj Imaging. 2024;2(1):9.
M. O. Khan, A. A. Seresti, K. Menon, A. L. Marsden and K. Nieman, "Quantification and Visualization of CT Myocardial Perfusion Imaging to Detect Ischemia-Causing Coronary Arteries." IEEE Transactions on Medical Imaging, doi: 10.1109/TMI.2024.3401552.
A. Zanoni, G. Geraci, M. Salvador, K. Menon, A.L. Marsden, D.E. Schiavazzi. "Improved multifidelity Monte Carlo estimators based on normalizing flows and dimensionality reduction techniques." Computer Methods in Applied Mechanics and Engineering, Volume 429, 2024, 117119.
Presenters
-
Alison L Marsden
Stanford Cardiovascular Institute; Department of Pediatrics (Cardiology), Stanford University, Stanford University
Authors
-
Karthik Menon
Stanford University
-
Andrea Zanoni
Stanford University
-
Owais Khan
Toronto Metropolitan University
-
Gianluca Geraci
Sandia National Laboratories
-
Koen Nieman
Stanford University
-
Daniele E Schiavazzi
University of Notre Dame
-
Alison L Marsden
Stanford Cardiovascular Institute; Department of Pediatrics (Cardiology), Stanford University, Stanford University