Low-Order Modeling and Machine Learning in Fluid Dynamics: Methods I
ORAL · A15 · ID: 2665251
Presentations
-
Adaptive Local Domain Decomposition for Learning Large-Scale Multi-physics Numerical Simulations
ORAL
–
Presenters
-
Wenzhuo Xu
Carnegie Mellon University
Authors
-
Wenzhuo Xu
Carnegie Mellon University
-
Christopher McComb
Carnegie Mellon University
-
Noelia Grande Gutiérrez
Carnegie Mellon University
-
-
Robust dominant balance analysis for identifying governing flow physics in experimental settings
ORAL
–
Presenters
-
Samuel Ahnert
University of Washington
Authors
-
Samuel Ahnert
University of Washington
-
Christian Lagemann
AI Institute in Dynamic Systems, University of Washington, University of Washington
-
Esther Lagemann
AI Institute in Dynamic Systems, University of Washington
-
Steven L Brunton
University of Washington
-
-
SGD-SINDy: Stochastic Gradient-Descent based Framework for Flexible System Identification
ORAL
–
Presenters
-
Amirhossein Arzani
University of Utah
Authors
-
Amirhossein Arzani
University of Utah
-
Siva Viknesh
University of Utah
-
Younes Tatari
University of Utah
-
-
At the intersection of Reduced Order Modelling and Discrete Loss Minimization: Can complicated, high-Re incompressible flow models become edge computable?
ORAL
–
Presenters
-
Sean R Breckling
Nevada National Security Site (NNSS)
Authors
-
Sean R Breckling
Nevada National Security Site (NNSS)
-
Jacob Murri
University of California Los Angeles
-
Clifford E Watkins
Special Technologies Laboratory (STL), Nevada National Security Sites
-
Caleb C Monoran
Nevada National Security Sites, Nevada National Security Site
-
James Watts
Colorado School of Mines
-
-
Data-Driven Resolvent Analysis with Residual Information
ORAL
–
Presenters
-
Katherine Cao
Stanford University
Authors
-
Katherine Cao
Stanford University
-
Matthew J Colbrook
DAMTP, Cambridge University
-
Benjamin Herrmann
Universidad de Chile
-
Steven L Brunton
University of Washington
-
Beverley J McKeon
Stanford University
-
-
KOopman Operator Learning : A KOOL model for long term stable prediction of dynamical systems
ORAL
–
Presenters
-
Dibyajyoti Chakraborty
Pennsylvania State University
Authors
-
Dibyajyoti Chakraborty
Pennsylvania State University
-
Conrad S Ainslie
University of California, Santa Cruz
-
Derek F DeSantis
Los Alamos National Lab
-
Arvind T Mohan
Los Alamos National Laboratory (LANL)
-
Ashesh K Chattopadhyay
University of California, Santa Cruz
-
Romit Maulik
Pennsylvania State University
-
-
Data-Driven Dimension Reduction Through Symmetry-Promoting Regularization
ORAL
–
Presenters
-
Nicholas Zolman
University of Washington
Authors
-
Nicholas Zolman
University of Washington
-
Samuel E Otto
University of Washington
-
J. Nathan Kutz
University of Washington, University of Washington, AI Institute for Dynamic Systems
-
Steven L Brunton
University of Washington
-
-
Dynamic Stall Estimation with Transition Networks
ORAL
–
Presenters
-
Ricardo Cavalcanti Linhares
University of Minnesota
Authors
-
Ricardo Cavalcanti Linhares
University of Minnesota
-
Karen Mulleners
École Polytechnique Fédérale de Lausanne
-
Ellen Kathryn Longmire
University of Minnesota
-
Melissa A Green
University of Minnesota
-
-
A Y-network encoder-decoder model for predicting vorticity fields from kinetic energy spectra in 2D decaying turbulence
ORAL
–
Presenters
-
Mrigank Dhingra
Virginia Tech
Authors
-
Mrigank Dhingra
Virginia Tech
-
Omer San
University of Tennessee
-
Anne E Staples
Virginia Tech, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061
-
-
Neural Operator Based Coarse-Grid Navier-Stokes / Interface Tracking Model Development
ORAL
–
Presenters
-
Arsen S Iskhakov
Kansas State University
Authors
-
Anna Iskhakova
Kansas State University
-
Arsen S Iskhakov
Kansas State University
-
Nam T Dinh
North Carolina State University
-
Igor A Bolotnov
North Carolina State University
-
-
Learning Acoustic Scattering in Turbulent Stratified Flows With Neural Operators
ORAL
–
Presenters
-
Christophe Millet
CEA, DAM, DIF, F-91297 Arpajon, France
Authors
-
Christophe Millet
CEA, DAM, DIF, F-91297 Arpajon, France
-