Inferring multiscale bubble growth dynamics by deep neural operator learning
ORAL
Abstract
–
Publication: [1] C. Lin, M. Maxey, Z. Li and G. Karniadakis. A seamless multiscale operator neural network for inferring bubble dynamics. Journal of Fluid Mechanics, 2021, 929: A18. <br>[2] C. Lin, Z. Li, L. Lu, S. Cai, M. Maxey and G. Karniadakis. Operator learning for predicting multiscale bubble growth dynamics. The Journal of Chemical Physics, 2021, 154: 104118.<br>[3] M. Lu, A. Mohammadi, Z. Meng, X. Meng, G. Li and Z. Li. Deep neural operator for learning transient response of interpenetrating-phase composites subject to dynamic loading. Computational Mechanics, 2023, 72: 563–576.
Presenters
-
Zhen Li
Clemson University
Authors
-
Zhen Li
Clemson University
-
Chensen Lin
Fudan University
-
Martin R Maxey
Brown University
-
George E Karniadakis
Brown University