Emerging Trends in Fluid Dynamics: Physics-Informed Machine Learning and Dynamic Modeling
ORAL · R28 · ID: 1765466
Presentations
-
A Physics-Informed Machine Learning Approach for Predicting Atomized Drop Distributions in Liquid Jet Simulations
ORAL
–
Presenters
-
Chris J Cundy
Stanford University
Authors
-
Chris J Cundy
Stanford University
-
Shahab Mirjalili
Center for Turbulence Research, Stanford University, Stanford University
-
Charlelie Laurent
Stanford University
-
Stefano Ermon
Stanford University
-
Ali Mani
Stanford University, Standard University, Department of Mechanical Engineering, Stanford University
-
-
Physics-Informed Neural Networks (PINN) for Enhanced Dynamic Modeling and Reverse Problem Solving in an Electro-Wetting Operated Microfluid Prism
ORAL
–
Publication: 1 Lee, Duck-Gyu, et al.:"Dynamics of a microliquid prism actuated by electrowetting." Lab on a Chip 13.2 (2013): 274-279.
Presenters
-
Chihoon Song
Gachon University
Authors
-
Chihoon Song
Gachon University
-
Duck Gyu Lee
Korea Institute of Machinery & Materials
-
Jeongsu LEE
Gachon University
-
Keunhwan Park
Gachon University
-
-
Predicting the three-dimensional separating flow in a diffuser using physics-informed neural networks
ORAL
–
Publication: Reconstructing the three-dimensional flow field of a turbulent separation bubble using physics-informed neural networks (planned submission)
Presenters
-
Ben Steinfurth
Tech Univ Berlin
Authors
-
Ben Steinfurth
Tech Univ Berlin
-
Julien Weiss
TU Berlin
-
-
DNS and physics-informed surrogate models of surfactant-laden dispersed flows
ORAL
–
Presenters
-
Juan Pablo Valdes
Imperial College London
Authors
-
Juan Pablo Valdes
Imperial College London
-
Fuyue Liang
Imperial College London
-
Lyes Kahouadji
Imperial College London
-
Sibo Cheng
Imperial College London
-
Seungwon Shin
Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea, Hongik University
-
Jalel Chergui
Université Paris Saclay, Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), 91400 Orsay, France, LISN-CNRS
-
Damir Juric
Université Paris Saclay, Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), 91400 Orsay, France, LISN-CNRS
-
Omar K Matar
Imperial College London
-
-
Discovering self-similar blow-up solutions using physics-informed neural networks
ORAL
–
Publication: Wang, Y., Lai, C. Y., Gómez-Serrano, J., & Buckmaster, T. (2023). Asymptotic Self-Similar Blow-Up Profile for Three-Dimensional Axisymmetric Euler Equations Using Neural Networks. Physical Review Letters, 130(24), 244002.<br><br>Wang, Y., & Lai, C. Y. (2023). Multi-stage Neural Networks: Function Approximator of Machine Precision. arXiv preprint arXiv:2307.08934.
Presenters
-
Yongji Wang
Stanford University
Authors
-
Yongji Wang
Stanford University
-
Ching-Yao Lai
Stanford University
-
Tristan Buckmaster
University of Maryland
-
Javier Gomez Serrano
Brown University
-
-
Semi-supervised machine learning model for Lagrangian state estimation
ORAL
–
Publication: Planned to submit to arXiv.
Presenters
-
Reno Miura
Keio University
Authors
-
Reno Miura
Keio University
-
Koji Fukagata
Keio University, Keio Univ
-
-
Cooperative swimming at low Reynolds numbers using deep reinforcement learning
ORAL
–
Publication: Liu, Y., Zou, Z., Pak, O.S. et al. Learning to cooperate for low-Reynolds-number swimming: a model problem for gait coordination. Sci Rep 13, 9397 (2023). https://doi.org/10.1038/s41598-023-36305-y
Presenters
-
Yangzhe Liu
The University of Hong Kong
Authors
-
Yangzhe Liu
The University of Hong Kong
-
Zonghao Zou
Cornell University
-
On Shun Pak
Santa Clara University
-
Alan C. H. Tsang
The University of Hong Kong
-
-
Reinforcement learning of reconfigurable microswimmers
ORAL
–
Presenters
-
Alan C. H. Tsang
The University of Hong Kong
Authors
-
Alan C. H. Tsang
The University of Hong Kong
-
On Shun Pak
Santa Clara University
-