Modeling Methods III: Deep Learning and Physics-Informed Learning
ORAL · L29 · ID: 1765326
Presentations
-
The effect of physical constraints on the loss function landscapes of deep learning models
ORAL
–
Presenters
-
Manuel Cabral
TU Delft
Authors
-
Manuel Cabral
TU Delft
-
Bernat Font
Barcelona Supercomputing Center, Barcelona Super Computing Center - Centro Nacional de Supercomputación (BSC-CNS), Spain
-
Gabriel D Weymouth
TU Delft
-
-
On application of Physics-Informed Neural Networks to Improve Noisy Data of Incompressible Flows
ORAL
–
Presenters
-
Abdelrahman A Elmaradny
University of California Irvine
Authors
-
Abdelrahman A Elmaradny
University of California Irvine
-
Ahmed Atallah
University of California, San Diego
-
Yasaman Farsiani
University of California Irvine
-
Haithem E Taha
UC Irvine, University of California Irvine
-
Arash Kheradvar
University of California Irvine
-
-
Explainable deep learning for fluid dynamics using a Fourier-wavelet analysis framework
ORAL
–
Publication: Subel, Guan, Chattopadhyay and Hassnazadeh, Explaining the physics of transfer learning in data-driven turbulence modeling, PNAS Nexus, Volume 2, Issue 3, March 2023
Presenters
-
Pedram Hassanzadeh
Rice University, University of Chicago
Authors
-
Pedram Hassanzadeh
Rice University, University of Chicago
-
Ashesh K Chattopadhyay
University of California, Santa Cruz
-
Yifei Guan
Rice University
-
Hamid Pahlavan
Rice U
-
Adam Subel
New York University
-
-
Reduced-order modeling of fluid flows with transformers
ORAL
–
Publication: https://doi.org/10.1063/5.0151515
Presenters
-
AmirPouya Hemmasian
Carnegie Mellon University
Authors
-
AmirPouya Hemmasian
Carnegie Mellon University
-
Amir Barati Farimani
Carnegie Mellon University
-
-
Development of reduced order modeling-based linear system extracting method for efficient data handling with a minimal nonlinearity
ORAL
–
Publication: Planned to submit to arXiv.
Presenters
-
Takeru Ishize
Keio university
Authors
-
Takeru Ishize
Keio university
-
Koji Fukagata
Keio University, Keio Univ
-
-
Residual-based physics-informed transfer learning (RePIT) strategy to accelerate unsteady fluid flow simulations
ORAL
–
Presenters
-
Joongoo Jeon
Jeonbuk National University
Authors
-
Joongoo Jeon
Jeonbuk National University
-
Juhyeong Lee
Hanyang University
-
Ricardo Vinuesa
KTH (Royal Institute of Technology), KTH Royal Institute of Technology
-
Sung Joong Kim
Hanyang University
-
-
Improving Neural Operators with Physics Informed Token Transformers
ORAL
–
Publication: "Physics Informed Token Transformer" available on ArXiv: https://arxiv.org/abs/2305.08757 and in submission at APL Machine Learning
Presenters
-
Cooper Lorsung
Carnegie Mellon University
Authors
-
Cooper Lorsung
Carnegie Mellon University
-
Zijie Li
Carnegie Mellon University
-
Amir Barati Farimani
Carnegie Mellon University
-
-
Dimensional compression and reconstruction for unstructured finite volume meshes via geometric deep learning
ORAL
–
Presenters
-
Liam K Magargal
Lehigh University
Authors
-
Liam K Magargal
Lehigh University
-
Parisa Khodabakhshi
Lehigh University
-
Steven N Rodriguez
United States Naval Research Laboratory
-
Justin W Jaworski
Virginia Tech
-
John Michopoulos
United States Naval Research Laboratory
-
-
Physics-informed neural network for enhancement of weather forecasts
ORAL
–
Publication: Planned article in writing process under same title
Presenters
-
Alvaro Moreno Soto
Universidad Carlos III de Madrid
Authors
-
Alvaro Moreno Soto
Universidad Carlos III de Madrid
-
Alejandro Cervantes
Universidad Carlos III de Madrid / Universidad Internacional de La Rioja
-
Manuel Soler
Universidad Carlos III de Madrid
-
-
Using self-adaptive physics-informed learning to estimate orographic gravity waves
ORAL
–
Presenters
-
Thi Nguyen Khoa Nguyen
ENS Paris-Saclay
Authors
-
Thi Nguyen Khoa Nguyen
ENS Paris-Saclay
-
Christophe Millet
CEA, DAM, DIF, F-91297 Arpajon, France
-
Thibault Dairay
Michelin
-
Raphaël Meunier
Michelin
-
Mathilde Mougeot
ENSIIE / ENS Paris-Saclay
-
-
Machine-learned reduced order modeling toward an effective flow control framework
ORAL
–
Publication: Planned to submit to arXiv
Presenters
-
Hiroshi Omichi
Keio University
Authors
-
Hiroshi Omichi
Keio University
-
Takeru Ishize
Keio university
-
Koji Fukagata
Keio University, Keio Univ
-
-
A Data-Free Partial Differential Equation Solver Based on Physics-Informed Neural Networks (PINN): FDM-PINN
ORAL
–
Presenters
-
Xiaoyu Tang
Northeastern University, Northeastern university
Authors
-
Xiaoyu Tang
Northeastern University, Northeastern university
-
Boqian Yan
Northeastern.edu
-