Machine Learning for Inference and Analysis of Fluid Flows
ORAL · L17 · ID: 1765485
Presentations
-
Fostering Open-source Resources and Practices within Deep Learning of Flow Physics
ORAL
–
Presenters
-
Wai Tong Chung
Stanford University
Authors
-
Wai Tong Chung
Stanford University
-
Bassem Akoush
Stanford University
-
Pushan Sharma
Stanford University
-
Matthias Ihme
Stanford University
-
-
Overview of a database for reduced-complexity modeling of fluid flows
ORAL
–
Publication: Towne, A., Dawson, S.T.M., Brès, G.A, Lozano-Durán, A., Saxton-Fox, T., Parthasarathy, A., Jones, A.R., Biler, H., Yeh, C.-A. Patel, H.D., Taira, K. (2023). A Database for Reduced-Complexity Modeling of Fluid Flows. AIAA Journal, 61 (7), 2867-2892.
Presenters
-
Aaron S Towne
University of Michigan
Authors
-
Aaron S Towne
University of Michigan
-
Scott T Dawson
Illinois Institute of Technology
-
Guillaume Bres
Cascade Technologies
-
Adrian Lozano-Duran
MIT, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
-
Theresa A Saxton-Fox
University of Illinois Urbana Champaign
-
Aadhy S Parthasarathy
University of Illinois at Urbana-Champai
-
Anya R Jones
U Maryland
-
Hulya Biler
University of Maryland, University of Southampton, University of southampton
-
Chi-An Yeh
North Carolina State University
-
Het D Patel
North Carolina State University
-
Kunihiko Taira
UCLA, University of California, Los Angeles
-
-
Unifying Predictions of Deterministic and Stochastic Physics in Mesh-reduced Space with Sequential Flow Generative Model
ORAL
–
Presenters
-
Luning Sun
Lawrence Livermore National Lab
Authors
-
Luning Sun
Lawrence Livermore National Lab
-
Xu Han
Tufts University
-
Han Gao
Harvard University
-
Jian-Xun Wang
University of Notre Dame
-
Li-Ping Liu
Tufts University
-
-
Reduced Order Modelling for Urban UAS Wind Field Estimation: A Neural Galerkin Projection Approach
ORAL
–
Presenters
-
Rohit Kameshwara Sampath Sai K Vuppala
Oklahoma State University-Stillwater
Authors
-
Rohit Kameshwara Sampath Sai K Vuppala
Oklahoma State University-Stillwater
-
Shane Coffing
Los Alamos National Lab
-
Arvind T Mohan
Los Alamos National Laboratory
-
Kursat Kara
Oklahoma State University-Stillwater, Oklahoma State University
-
-
Neural field based sequential networks for parametric spatial-temporal PDEs
ORAL
–
Presenters
-
Pan Du
University of Notre Dame
Authors
-
Pan Du
University of Notre Dame
-
Jian-Xun Wang
University of Notre Dame
-
-
Extreme Aerodynamic Manifold: Vortex-Airfoil Interactions
ORAL
–
Publication: Fukami, K., & Taira, K. (2023). Grasping extreme aerodynamics on a low-dimensional manifold. arXiv preprint arXiv:2305.08024.
Presenters
-
Kai Fukami
UCLA
Authors
-
Kai Fukami
UCLA
-
Kunihiko Taira
UCLA, University of California, Los Angeles
-
-
Analyzing the relationship between wake flow patterns and design element changes of automobile using machine learning
ORAL
–
Publication: 1. S. L. Brunton, "Applying machine learning to study of fluid mechanics." Acta Mech. Sin., 37, 1718-1726, 2021.<br>2. R. Machuca and K. Phillips, "Applications of Vector Fields to Image Processing," IEEE Transactions on Pattern Analysis and Machine Intelligence, 316-329, 1983.<br>3. Z. Xu, et al., "A diagram of evaluating multiple aspects of model performance in simulating vector fields," Geosci. Model Dev. 9, 4365-4380, 2016.<br>4. K.He, et al., "Deep Residual Learning for Image Recognition," Computer Vision Foundation, 2015.
Presenters
-
Jun Kim
Department of Mechanical Engineering, Hanyang University
Authors
-
Jun Kim
Department of Mechanical Engineering, Hanyang University
-
Ilhoon Jang
Hanyang University, Department of Mechanical Engineering, Hanyang University
-
Je Hyeong Hong
Department of Electronic Engineering, Hanyang University
-
Chanhyuk Yun
Department of Electronic Engineering, Hanyang University
-
Simon Song
Hanyang University, Department of Mechanical Engineering, Hanyang University
-
-
Factorized kernel attention for scalable PDE learning
ORAL
–
Presenters
-
Zijie Li
Carnegie Mellon University
Authors
-
Zijie Li
Carnegie Mellon University
-
Dule Shu
Carnegie Mellon University
-
Amir Barati Farimani
Carnegie Mellon University
-
-
Global Flow Reconstruction from Local Pressure Data using Dynamic Mode Decomposition
ORAL
–
Publication: One planned paper, similarly titled "Global Flow Reconstruction from Local Pressure Data using Dynamic Mode Decomposition"
Presenters
-
Colin Rodwell
Clemson University
Authors
-
Colin Rodwell
Clemson University
-
Kumar Sourav
Clemson University
-
Phanindra Tallapragada
Clemson University
-
-
In Situ Anomaly Detection in Turbulent Reacting Flows at the Exascale
ORAL
–
Presenters
-
Jorge Salinas
Sandia National Laboratories, University of Florida (past) and Combustion Research Facility, Sandia National Laboratories (current)
Authors
-
Jorge Salinas
Sandia National Laboratories, University of Florida (past) and Combustion Research Facility, Sandia National Laboratories (current)
-
Hemanth Kolla
Sandia National Laboratories, Livermore, Sandia National Laboratories
-
Martin Rieth
Sandia National Laboratories
-
Jacqueline H Chen
Sandia National Laboratories, Sandia National Labs
-
Janine C Bennett
Sandia National Laboratories
-
Marco Arienti
Sandia National Laboratories
-
Nicole Marsaglia
Lawrence Livermore National Laboratory
-
Cyrus Harrison
Lawrence Livermore National Laboratory
-
-
Analyzing the Dynamics of Discrete Gust Encounters with Persistent Homology
ORAL
–
Publication: L. Smith, K. Fukami, G. Sedky, A. Jones, and K. Taira, "A cyclic perspective on transient gust encounters through the lens of persistent homology," Journal of Fluid Mechanics, in review, 2023.
Presenters
-
Luke Smith
UCLA, University of California, Los Angeles
Authors
-
Luke Smith
UCLA, University of California, Los Angeles
-
Kai Fukami
UCLA
-
Girguis Sedky
Princeton University
-
Anya R Jones
U Maryland
-
Kunihiko Taira
UCLA, University of California, Los Angeles
-
-
ChatGPT for Programming Numerical Problems of Fluid Mechanics
ORAL
–
Publication: "ChatGPT for programming numerical methods"<br>Link to the journal paper:<br>https://www.dl.begellhouse.com/journals/558048804a15188a,498820861ef102d2,1255e053242c9a40.html
Presenters
-
Ali Kashefi
Stanford University
Authors
-
Ali Kashefi
Stanford University
-
Tapan Mukerji
Stanford University
-