Numerical studies of the lymphatic uptake rate
ORAL
Abstract
Lymphatic uptake is essential for transporting nutrients, wastes, immune cells, and therapeutic proteins. Despite its importance, the literature lacks a quantitative analysis of the factors that affect lymphatic uptake, including interstitial pressure, downstream pressure, and tissue deformation. In this work, we present a coupled model of a poroelastic tissue with initial lymphatics and quantify the impact of these factors on the rate of lymphatic uptake. Our results indicate that the lymphatic uptake increases with the amplitude of the oscillating downstream pressure when the amplitude exceeds a threshold. Additionally, the cross-sectional area of initial lymphatics increases with the volumetric strain of the tissue, while the interstitial pressure increases when the strain rate becomes negative. Therefore, the lymphatic uptake reaches its maximum when the tissue has positive volumetric strain while being compressed. We have also investigated the effect of intersection angles and positions of two initial lymphatics and concluded that they have minor impacts on lymphatic uptake. However, the lymphatic uptake per unit length of initial lymphatics decreases with their total length. These findings advance our understanding of lymphatic uptake and can guide the development of strategies to accelerate the transport of therapeutics.
–
Publication: Submitted Manuscript: Numerical studies of the lymphatic uptake rate, currently under review at Computers in Biology and Medicine
Presenters
-
Chenji Li
Purdue University
Authors
-
Chenji Li
Purdue University
-
Xiaoxu Zhong
Purdue University
-
Arezoo M Ardekani
Purdue University, Merck