Optimal tracking strategies in a turbulent flow
ORAL
Abstract
Data are open downloadable from TURB-Lagr [3], a database of more than 300K three-dimensional trajectories of tracer particles advected by a fully developed homogeneous and isotropic turbulent flow.
[1] Calascibetta, C., Biferale, L., Borra, F., Celani, A. and Cencini, M. Optimal tracking strategies in a turbulent flow - arXiv preprint arXiv:2305.04677, (2023).
[2] Calascibetta, C., Biferale, L., Borra, F., Celani, A. and Cencini, M. Taming Lagrangian chaos with multi-objective reinforcement learning. Eur. Phys. J. E 46, 9 (2023).
[3] https://smart-turb.roma2.infn.it/
–
Publication: [1] Calascibetta, C., Biferale, L., Borra, F., Celani, A. and Cencini, M. Optimal tracking strategies in a turbulent flow - arXiv preprint arXiv:2305.04677, (2023). <br><br>[2] Calascibetta, C., Biferale, L., Borra, F., Celani, A. and Cencini, M. Taming Lagrangian chaos with multi-objective reinforcement learning. Eur. Phys. J. E 46, 9 (2023). https://doi.org/10.1140/epje/s10189-023-00271-0
Presenters
-
Chiara Calascibetta
University of Rome Tor Vergata & INFN
Authors
-
Chiara Calascibetta
University of Rome Tor Vergata & INFN
-
Luca Biferale
University of Roma Tor Vergata, University of Rome Tor Vergata & INFN
-
Francesco Borra
Laboratory of Physics of the École Normale Supérieure
-
Antonio Celani
Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics, ICTP., The Abdus Salam International Centre for Theoretical Physics
-
Massimo Cencini
Istituto dei Sistemi Complessi, CNR.