APS Logo

Zooming into Vlasov-Poisson using the characteristic mapping method

ORAL

Abstract

We propose an efficient semi-Lagrangian characteristic mapping method for solving the one+one-dimensional Vlasov-Poisson equations with high precision on a coarse grid. The flow map is evolved numerically with a gradient-augmented level-set method and exponential resolution in linear time is obtained. Global third order convergence in space and time is shown and conservation properties are assessed. For benchmarking we consider Landau damping and the two-stream instability. We compare the results with a classical pseudo-spectral method. The extreme fine-scale resolution features are illustrated with zooms showing the method's capabilities of going beyond the limit of currently available schemes.

Publication: P. Krah, X.-Y. Yin, J. Bergmann, J.-C. Nave and K. Schneider.<br>A Characteristic Mapping Method for Vlasov–Poisson with extreme resolution properties<br>Preprint, 08/2023<br><br>X.-Y. Yin, O. Mercier, B. Yadav, K. Schneider and J.-C. Nave.<br>A Characteristic Mapping Method for the two-dimensional incompressible Euler equations.<br>J. Comput. Phys., 424, 109781, 2021.

Presenters

  • Kai Schneider

    Institut de Mathematiques Marseille, Aix-Marseille University, Aix-Marseille University

Authors

  • Philipp Krah

    I2M, Aix-Marseille Université, France

  • Julius Bergmann

    I2M, Aix Marseille Université, France and TU Berlin, Germany

  • Xi-Yuan Yin

    LMFA, Ecole Centrale de Lyon, Université de Lyon, France

  • Jean-Christophe Nave

    McGill University, Montreal, Canada

  • Kai Schneider

    Institut de Mathematiques Marseille, Aix-Marseille University, Aix-Marseille University