Reinforcement Learning for Flow Control
ORAL · A30 · ID: 1765625
Presentations
-
Discovering novel control strategies for turbulent flows through deep reinforcement learning
ORAL
–
Publication: L. Guastoni, J. Rabault, P. Schlatter, H. Azizpour and R. Vinuesa. Deep reinforcement learning for turbulent drag reduction in channel flows. Eur. Phys. J. E, 46, 27, 2023
Presenters
-
Ricardo Vinuesa
KTH (Royal Institute of Technology), KTH Royal Institute of Technology
Authors
-
Ricardo Vinuesa
KTH (Royal Institute of Technology), KTH Royal Institute of Technology
-
Luca Guastoni
KTH Royal Institute of Technology
-
Jean Rabault
Univ of Oslo
-
Hossein Azizpour
KTH Royal Institute of Technology
-
-
Swimming in Turbulent Environments with Physics Informed Reinforcement Learning
ORAL
–
Publication: N/A
Presenters
-
Christopher F Koh
University of Arizona
Authors
-
Christopher F Koh
University of Arizona
-
Michael Chertkov
University of Arizona
-
Laurent Pagnier
University of Arizona
-
-
HydroGym: A Reinforcement Learning Control Framework for Fluid Dynamics
ORAL
–
Presenters
-
Ludger Paehler
Technical University of Munich
Authors
-
Ludger Paehler
Technical University of Munich
-
Jared Callaham
University of Washington
-
Samuel Ahnert
University of Washington
-
Nikolaus Adams
Tech Univ Muenchen, Technical University of Munich
-
Steven L Brunton
University of Washington, Department of Mechanical Engineering, University of Washington
-
-
Path planning of swimmers in complex flows: Comparing reinforcement learning vs optimizing a discrete loss (ODIL)
ORAL
–
Presenters
-
Lucas Amoudruz
Harvard University
Authors
-
Lucas Amoudruz
Harvard University
-
Petr Karnakov
Harvard University
-
Petros Koumoutsakos
Harvard University
-
-
SINDy-RL: Interpretable and Efficient Reinforcement Learning for Fluid Flow Control
ORAL
–
Presenters
-
Nicholas Zolman
University of Washington
Authors
-
Nicholas Zolman
University of Washington
-
Urban Fasel
Imperial College London
-
Nathan Kutz
University of Washington, University of Washington, AI Institute for Dynamic Systems
-
Steven L Brunton
University of Washington, Department of Mechanical Engineering, University of Washington
-
-
Distributed Actuation of Turbulent Flow Around a Cylinder using Deep Reinforcement Learning
ORAL
–
Presenters
-
Pedro Ivo Almeida
Florida Atlantic University
Authors
-
Pedro Ivo Almeida
Florida Atlantic University
-
Ian Jacobi
Technion - Israel Institute of Technology
-
Beni Cukurel
Technion - Israel Institute of Technology
-
Siddhartha Verma
Florida Atlantic University
-
-
Reinforcement learning for real-time flow control of vertical axis wind turbines
ORAL
–
Presenters
-
Baptiste Corban
ISAE-Supaero
Authors
-
Baptiste Corban
ISAE-Supaero
-
Daniel Fernex
École polytechnique fédérale de Lausanne (EPFL), EPFL
-
Karen Mulleners
EPFL, École polytechnique fédérale de Lausanne (EPFL)
-
Emmanuel Rachelson
ISAE-Supaero
-
Michaël Bauerheim
ISAE-Supaero
-
Thierry Jardin
ISAE-Supaero
-
-
Deep reinforcement learning for active separation control in a turbulent boundary layer
ORAL
–
Presenters
-
Francisco Alcántara-Ávila
KTH Royal Institute of Technology
Authors
-
Francisco Alcántara-Ávila
KTH Royal Institute of Technology
-
Bernat Font
Barcelona Supercomputing Center, Barcelona Super Computing Center - Centro Nacional de Supercomputación (BSC-CNS), Spain
-
Jean Rabault
Norwegian Meteorological Institute, Norway
-
Ricardo Vinuesa
KTH (Royal Institute of Technology), KTH Royal Institute of Technology
-
Oriol Lehmkuhl
Barcelona supercomputing center, Barcelona Super Computing Center - Centro Nacional de Supercomputación (BSC-CNS), Spain
-
-
Control of reacting flows with hybrid differentiable/deep learning flow solver
ORAL
–
Presenters
-
Nguyen Anh Khoa Doan
Delft University of Technology
Authors
-
Nilam Tathawadekar
Technical University of Munich
-
Camilo Silva
Technical University of Munich
-
Nils Thuerey
Technical University of Munich
-
Nguyen Anh Khoa Doan
Delft University of Technology
-