APS Logo

Magnetic signature of vertically migrating aggregations in the ocean

ORAL

Abstract

The transport of heat and solutes by vertically migrating aggregations of plankton has long been explored as a potentially important source of ocean mixing. However, direct evidence of enhanced mixing due to these migrations remains challenging to obtain and inconclusive. These shortcomings are due to the limitations of current measurement techniques, i.e., velocimetry techniques, which require a priori knowledge of the precise aggregation location and typically trigger animal avoidance behavior from introducing instrumentation into the migration. Here, we develop a new approach to overcome these longstanding limitations by leveraging advancements in modern magnetometry to detect the flow-induced magnetic fields that naturally arise from seawater as it moves through the Earth's geomagnetic field. We derive quantitative predictions showing that these flow-induced magnetic fields in the vicinity of migrating aggregations have a strength proportional to the integrated fluid transport due to the migration. Importantly these magnetic signatures are potentially detectable remotely at a significant distance far from the aggregation and region of moving fluid with emerging quantum-enhanced magnetometry techniques such as Nitrogen-Vacancy centers in diamond. These results provide a new, testable framework for quantifying the significance of fluid transport in the ocean due to swimming organisms.

Publication: https://arxiv.org/abs/2207.03486

Presenters

  • Matthew K Fu

    Caltech

Authors

  • Matthew K Fu

    Caltech

  • John O Dabiri

    Caltech, California Institute of Technology