Drops: Electric Field Effects
ORAL · A29 · ID: 678908
Presentations
-
Mechanism of splitting in Electrospinning
ORAL
–
Presenters
-
Krishna Raja Dharmarajan
King Abdullah University of Science and Technology
Authors
-
Krishna Raja Dharmarajan
King Abdullah University of Science and Technology
-
Muhammad F Afzaal
King Abdullah University of Science and Technology
-
Yuan Si S Tian
Chang'an University, Xi'an, 710064, China, Key laboratory of road construction technology and equipment of ministry of education, School of construction machinery, Chang'an University: Xi'an, Shaanxi, CN
-
Er Qiang Li
Department of Modern Mechanics, University of Science and Technology of China: Hefei, Anhui, CN
-
Sigurdur T Thoroddsen
King Abdullah Univ of Sci & Tech (KAUST), King Abdullah University of Science and Technology (KAUST), King Abdullah University of Science and Technology
-
-
A spectral boundary integral method for simulating electrohydrodynamic flows in liquid droplets
ORAL
–
Presenters
-
Mohammadhossein Firouznia
University of California, San Diego
Authors
-
Mohammadhossein Firouznia
University of California, San Diego
-
Spencer H Bryngelson
Georgia Tech, Georgia Institute of Technology
-
David Saintillan
University of California, San Diego
-
-
Electric field induced ion evaporation from charged nano-droplets undergoing Rayleigh fission
ORAL
–
Publication: Ion emission from nano-drops undergoing Coulomb explosion: A continuum numerical study. (under preparation for Journal of Fluid Mechanics)
Presenters
-
Kaartikey Misra
University of California, Irvine
Authors
-
Kaartikey Misra
University of California, Irvine
-
Manuel Gamero-Castano
University of California, Irvine
-
-
Effect of viscoelasticity on drop deformation in a uniform electric field
ORAL
–
Presenters
-
Santanu K Das
Indian Institute of Technology Guwahati
Authors
-
Santanu K Das
Indian Institute of Technology Guwahati
-
Sarika S Bangar
Indian Institute of Science, Bangalore
-
Amaresh Dalal
Indian Institute of Technology Guwahati
-
Gaurav Tomar
Department of Mechanical Engineering, Indian Institute of Science, Bangalore., Indian Institute of Science, Bangalore
-
-
Dielectrophoretic Stretching of Drops of Silicone Oil: Experiments and Multi-Physical Modeling
ORAL
–
Publication: R. Granda, G. Li, V. Yurkiv, F. Mashayek, A. L. Yarin (2022) Dielectrophoretic stretching of drops of silicone oil: Experiments and multi-physical modeling. Phys. Fluids 34, 042108.
Presenters
-
Alexander L Yarin
University of Illinois at Chicago
Authors
-
Rafael Granda
University of Illinois at Chicago
-
Gen Li
Dartmouth College
-
Vitaliy Yurkiv
University of Illinois at Chicago
-
Farzad Mashayek
University of Illinois at Chicago
-
Alexander L Yarin
University of Illinois at Chicago
-
-
Electrowetting of weak polyelectrolyte solutions
ORAL
–
Presenters
-
Sumit Kumar
Technion - Israel Institute of Technology
Authors
-
Sumit Kumar
Technion - Israel Institute of Technology
-
Patrick Martin
Technion - Israel Institute of Technology
-
Gleb Vasilyev
Technion - Israel Institute of Technology
-
Rita Vilensky
Technion - Israel Institute of Technology
-
Gleb Vasilyev
Technion - Israel Institute of Technology
-
-
Electrohydrodynamics of drops with complex interfaces
ORAL
–
Presenters
-
Herve Nganguia
Towson University
Authors
-
Herve Nganguia
Towson University
-
Debasish Das
University of Strathclyde
-
On Shun Pak
Santa Clara University
-
Yuan-Nan Young
New Jersey Inst of Tech
-
-
A Low-Cost Electrowetting on Dielectric-Driven Micropump
ORAL
–
Presenters
-
Behzad Parsi
Brigham Young University
Authors
-
Behzad Parsi
Brigham Young University
-
Nathan b Crane
Brigham Young University
-
Daniel Maynes
Brigham Young University
-
-
Shedding of condensate by a shearing airflow under an electric field
ORAL
–
Publication: [1] R. V Wahlgren, "Atmospheric water vapour processor designs for potable water production: a review," Water Res., vol. 35, no. 1, pp. 1–22, 2001.<br>[2] D. Milani, A. Abbas, A. Vassallo, M. Chiesa, and D. Al Bakri, "Evaluation of using thermoelectric coolers in a dehumidification system to generate freshwater from ambient air," Chem. Eng. Sci. J., vol. 66, pp. 2491–2501, 2011.<br>[3] R. L. Webb and K. Hong, "Performance of Dehumidifying Heat Exchangers With and Without Wetting Coatings," in Transaction of the ASME, 1999, p. vol. 125, 1018-1026.<br>[4] S. Parekh, M. M. Faridb, J. R. Selmana, and S. Al-Hallaj, "Solar desalination with a humidification-dehumidification technique-a comprehensive technical review," Desalination, vol. 160, pp. 167–186, 2004.<br>[5] M.-H. Kim and C. W. Bullard, "Air-side performance of brazed aluminum heat exchangers under dehumidifying conditions," Int. J. Refrig., vol. 25, no. 7, pp. 924–934, 2002.<br>[6] M. Rama, N. Reddy, M. Yohan, and K. H. Reddy, "Heat Transfer Co-Efficient Through Dropwise Condensation and Filmwise Condensation Apparatus," Int. J. Sci. Res. Publ., vol. 2, no. 12, 2012.<br>[7] J. W. Rose, "Dropwise condensation theory and experiment: A review," Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 216, no. 2, pp. 115–128, 2002.<br>[8] A. Alizadeh, V. Bahadur, A. Kulkarni, M. Yamada, and J. A. Ruud, "Hydrophobic surfaces for control and enhancement of water phase transitions," MRS Bull., vol. 38, no. 5, pp. 407–411, May 2013.<br>[9] N. Miljkovic, R. Enright, and E. N. Wang, "Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces," ACS Nano, vol. 6, no. 2, pp. 1776–1785, Feb. 2012.<br>[10] P. Meakin, "Steady state behavior in a model for droplet growth, sliding and coalescence: the final stage of dropwise condensation," Phys. A Stat. Mech. its Appl., vol. 183, no. 4, pp. 422–438, May 1992.<br>[11] N. Miljkovic et al., "Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces," Nano Lett., vol. 13, no. 1, pp. 179–187, Jan. 2013.<br>[12] R. D. Narhe and D. A. Beysens, "Nucleation and growth on a superhydrophobic grooved surface," Phys. Rev. Lett., vol. 93, no. 7, p. 076103, Aug. 2004.<br>[13] N. Miljkovic, D. J. Preston, R. Enright, and E. N. Wang, "Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces," ACS Nano, vol. 7, no. 12, pp. 11043–11054, Dec. 2013.<br>[14] A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly, and C. M. Megaridis, "Enhancing dropwise condensation through bioinspired wettability patterning," Langmuir, vol. 30, no. 43, pp. 13103–13115, 2014.<br>[15] J. B. Boreyko and C. H. Chen, "Self-propelled dropwise condensate on superhydrophobic surfaces," Phys. Rev. Lett., vol. 103, no. 18, p. 184501, Oct. 2009.<br>[16] C. Lee, H. Kim, and Y. Nam, "Drop Impact Dynamics on Oil-Infused Nanostructured Surfaces," Langmuir, vol. 30, no. 28, pp. 8400–8407, Jul. 2014.<br>[17] J. S. Wexler, I. Jacobi, and H. A. Stone, "Shear-driven failure of liquid-infused surfaces," Phys. Rev. Lett., vol. 114, no. 16, p. 168301, Apr. 2015.<br>[18] C. A. Papakonstantinou, H. Chen, V. Bertola, and A. Amirfazli, "Effect of condensation on surface contact angle," Colloids Surfaces A Physicochem. Eng. Asp., vol. 632, p. 127739, 2022.<br>[19] A. Ghosh, S. Beaini, B. J. Zhang, R. Ganguly, and C. M. Megaridis, "Enhancing dropwise condensation through bioinspired wettability patterning," Langmuir, vol. 30, no. 43, pp. 13103–13115, Nov. 2014.<br>[20] P. Birbarah, Z. Li, A. Pauls, and N. Miljkovic, "A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces," Langmuir, vol. 31, no. 28, pp. 7885–7896, Jul. 2015.<br>[21] X. Yan, J. Li, L. Li, Z. Huang, F. Wang, and Y. Wei, "Droplet condensation on superhydrophobic surfaces with enhanced dewetting under a tangential AC electric field," Appl. Phys. Lett., vol. 109, no. 16, p. 161601, Oct. 2016.<br>[22] T. Foulkes, J. Oh, P. Birbarah, J. Neely, N. Miljkovic, and R. C. N. Pilawa-Podgurski, "Active hot spot cooling of GaN transistors with electric field enhanced jumping droplet condensation," Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 912–918, May 2017.<br>[23] A. Shahriari, P. Birbarah, J. Oh, N. Miljkovic, and V. Bahadur, "Electric Field–Based Control and Enhancement of Boiling and Condensation," https://doi.org/10.1080/15567265.2016.1253630, vol. 21, no. 2, pp. 102–121, Apr. 2016.<br>[24] E. D. Wikramanayake and V. Bahadur, "Electrowetting-based enhancement of droplet growth dynamics and heat transfer during humid air condensation," Int. J. Heat Mass Transf., vol. 140, pp. 260–268, Sep. 2019.<br>[25] F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," J. Phys. Condens. Matter, vol. 17, no. 28, Jul. 2005.<br>[26] V. Bahadur and S. V. Garimella, "An energy-based model for electrowetting-induced droplet actuation," J. Micromechanics Microengineering, vol. 16, no. 8, p. 1494, Jun. 2006.<br>[27] N. Kumari, V. Bahadur, and S. V. Garimella, "Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages," J. Micromechanics Microengineering, vol. 18, no. 10, p. 105015, Sep. 2008.<br>[28] J. Kim and M. Kaviany, "Purging of dropwise condensate by electrowetting," J. Appl. Phys., vol. 101, no. 10, 2007.<br>[29] L. Chen and E. Bonaccurso, "Electrowetting — From statics to dynamics," Adv. Colloid Interface Sci., vol. 210, pp. 2–12, Aug. 2014.<br>[30] D. Baratian, R. Dey, H. Hoek, D. Van Den Ende, and F. Mugele, "Breath Figures under Electrowetting: Electrically Controlled Evolution of Drop Condensation Patterns," Phys. Rev. Lett., vol. 120, no. 21, pp. 1–5, 2018.<br>[31] M. Shakeri Bonab, R. Kempers, and A. Amirfazli, "Determining transient heat transfer coefficient for dropwise condensation in the presence of an air flow," Int. J. Heat Mass Transf., vol. 173, p. 121278, 2021.<br>[32] A. Razzaghi, S. A. Banitabaei, and A. Amirfazli, "Shedding of multiple sessile droplets by an airflow," Phys. Fluids, vol. 30, no. 8, p. 087104, 2018.<br>[33] A. J. B. Milne and A. Amirfazli, "Drop Shedding by Shear Flow for Hydrophilic to Superhydrophobic Surfaces," Langmuir, vol. 25, no. 24, pp. 14155–14164, 2009.<br>[34] D. Baratian, R. Dey, H. Hoek, D. Van Den Ende, and F. Mugele, "Breath Figures under Electrowetting: Electrically Controlled Evolution of Drop Condensation Patterns," Phys. Rev. Lett., vol. 120, no. 21, May 2018.<br>[35] R. Kempers, P. Kolodner, A. Lyons, and A. J. Robinson, "A high-precision apparatus for the characterization of thermal interface materials," Rev. Sci. Instrum., vol. 80, no. 9, p. 095111, Sep. 2009.<br>[36] S. Danilo, C. Dominique, and P. Frédéric, "Experimental dropwise condensation of unsaturated humid air – Influence of humidity level on latent and convective heat transfer for fully developed turbulent flow," Int. J. Heat Mass Transf., vol. 102, pp. 846–855, 2016.<br>[37] S. J. Kline and F. A. McClintock, "Describing uncertainties in single-sample experiments," Mech. Eng., vol. 75, no. 1, pp. 3–8, 1953.<br>[38] E. D. Wikramanayake, J. Perry, and V. Bahadur, "AC electrowetting promoted droplet shedding on hydrophobic surfaces," Appl. Phys. Lett., vol. 116, no. 19, 2020.<br>[39] R. Dey, J. Gilbers, D. Baratian, H. Hoek, D. Van Den Ende, and F. Mugele, "Controlling shedding characteristics of condensate drops using electrowetting," Appl. Phys. Lett., vol. 113, no. 24, p. 243703, Dec. 2018.<br>[40] D. K. Mandal, A. Criscione, C. Tropea, and A. Amirfazli, "Shedding of Water Drops from a Surface under Icing Conditions," Langmuir, vol. 31, no. 34, pp. 9340–9347, 2015.<br>[41] A. Alshehri, J. P. Rothstein, and H. P. Kavehpour, "Improving heat and mass transfer rates through continuous drop-wise condensation," Sci. Reports 2021 111, vol. 11, no. 1, pp. 1–15, Oct. 2021.<br><br>
Presenters
-
Milad Shakeri Bonab
York Univ
Authors
-
Milad Shakeri Bonab
York Univ
-
Alidad Amirfazli
York Univ
-
Roger Kempers
York Univ
-