Turbulence Model Development based on a Novel Method Combining Gene Expression Programming and Artificial Neural Network
ORAL
Abstract
–
Publication: [1] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, 2016. <br>[2] J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech. 807 (2016) 155–166. <br>[3] C. Xie, Z. Yuan, J. Wang, Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence, Phys. Fluids 32 (11) (2020) 115101. <br>[4] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2018) 686–707. <br>[5] X. Yang, S. Zafar, J.-X. Wang, H. Xiao, Predictive large-eddy-simulation wall modeling via physics-informed neural networks, Phys. Rev. Fluids 4 (3) (2019) 034602. <br>[6] Q. Liu, J. Niu, P. Lu, F. Dong, F. Zhou, X. Meng, W. Xu, S. Li, B. X. Hu, Interannual and seasonal variations of permafrost thaw depth on the qinghai-tibetan plateau: A comparative study using long short-term memory, convolutional neural networks, and random forest, Sci. Total Environ. 838 (2022) 155886. <br>[7] S. Sahoo, C. H. Lampert, G. Martius, Learning equations for extrapolation and control, in: International Con ference on Machine Learning, 2018, pp. 4442–4450. <br>[8] S. Kim, P. Y. Lu, S. Mukherjee, M. Gilbert, M. Soljacic, Integration of neural network-based symbolic regression in deep learning for scientific discovery, IEEE Trans. Neural Netw. Learn. Syst. 32 (9) (2020) 4166–4177. <br>[9] S.-M. Udrescu, M. Tegmark, Ai feynman: A physics-inspired method for symbolic regression, Sci. Adv. 6 (16) (2020) eaay2631. <br>[10] B. K. Petersen, M. L. Larma, T. N. Mundhenk, C. P. Santigago, S. K. Kim, J. T. Kim, Deep symbolic regression: Recovering mathematical expressions from data via risk-seeking policy gradients, in: International Conference on Learning Representations, 2020.<br>[11] L. Biggio, T. Bendinelli, A. Neitz, A. Lucchi, G. Parascandolo, Neural symbolic regression that scales, in: International Conference on Machine Learning, 2021, pp. 936–945. <br>[12] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, 1975. <br>[13] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT press, 1992. <br>[14] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data, Sci. 324 (5923) (2009) 81–85. <br>[15] C. Ferreira, Gene expression programming: A new adaptive algorithm for Solving Problems, Complex Syst. 13 (2) (2001) 87–129. <br>[16] J. Weatheritt, R. D. Sandberg, A novel evolutionary algorithm applied to algebraic modifications of the rans stress strain relationship, J. Comput. Phys. 325 (2016) 22–37. <br>[17] H. Li, Y. Zhao, J. Wang, R. D. Sandberg, Data-driven model development for large- eddy simulation of turbu lence using gene- expression programing, Phys. Fluids 33 (2021) 125–127. <br>[18] M. A. Khan, S. A. Memon, F. Farooq, M. F. Javed, F. Aslam, R. Alyousef, Compressive strength of fly-ash based geopolymer concrete by gene expression programming and random forest, Adv. Civ. Eng. 2021 (2021) 6618407. <br>[19] M. A. Khan, A. Zafar, A. Akbar, M. F. Javed, A. H. Mosavi, Application of gene expression programming (gep) for the prediction of compressive strength of geopolymer concrete, Mater. 14 (5) (2021) 1106. <br>[20] M. Cranmer, A. Sanchez Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, S. Ho, Discovering symbolic models from deep learning with inductive biases, in: Advances in Neural Information Processing Systems, 2020, pp. 17429–17442. <br>[21] B. He, Q. Lu, Q. Yang, J. Luo, Z. Wang, Taylor genetic programming for symbolic regression, ArXiv (2022) arXiv:2205.09751. <br>[22] J. E. Dennis, J. J. More, Quasi-newton methods, motivation and theory, Siam Review 19 (1) (1977) 46–89. <br>[23] M. R. Segal, Machine learning benchmarks and random forest regression, Biostat. (2004) 1–14. <br>[24] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, 2011, pp. 315–323. <br>[25] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. 12 (2011) 2121–2159. <br>[26] C. H. Kautz, P. R. L. Heron, M. E. Loverude, L. C. Mcdermott, Student understanding of the ideal gas law, part i: A macroscopic perspective, Am. J. Phys. 73 (11) (2005) 1055–1063. <br>[27] I. Newton, A. E. Shapiro, The Principia: Mathematical Principles of Natural Philosophy, Univ. of California Press, 1999. <br>[28] S. B. Pope, Turbulent flows, Cambridge university press, 2000. <br>[29] J. Graham, K. Kanov, X. I. A. Yang, M. Lee, C. Meneveau, A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for les, J. Turbul. 17 (2) (2016) 181–215, doi: 10.7281/T10K26QW. <br>[30] E. Perlman, R. Burns, Y. Li, C. Meneveau, Data exploration of turbulence simulations using a database cluster, in: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, 2007, pp. 1–11. <br>[31] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, G. Eyink, A public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence, J. Turbul. 9 (31) (2008) 1–29. <br>[32] J. Smagorinsky, General circulation experiments with the primitive equations: I. the basic experiment, Mon. Weather Rev. 91 (3) (1963) 99–164. <br>[33] P. Moin, K. Squires, W. Cabot, S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids 3 (11) (1991) 2746–2757. <br>[34] S. Liu, C. Meneveau, J. Katz, On the properties of similarity subgrid-scale models as deduced from measure ments in a turbulent jet, J. Fluid Mech. 275 (1994) 83–119. <br>[35] R. A. Clark, J. H. Ferziger, W. C. Reynolds, Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid Mech. 91 (1) (1979) 1–16. <br>[36] M. Buzzicotti, M. Linkmann, H. Aluie, L. Biferale, J. Brasseur, C. Meneveau, Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence, J. Turbul. 19 (2) (2018) 167–197.
Presenters
-
Haochen Li
Peking Univ
Authors
-
Haochen Li
Peking Univ
-
Yaomin Zhao
Peking University, Peking Univ