APS Logo

Protein molecular deformation and protein crystal damage induced by shock waves traveling in liquid microjets

ORAL

Abstract

Femtosecond crystallography studies done at X-ray laser facilities are an emerging method that provides new insights into the biological function of complex proteins. Second-generation X-ray lasers enable acquisition rates exceeding a million diffraction images per second, and to supply fresh protein crystals at these rates, they must be carried by high-velocity liquid microjets. These microjets also guide the shock waves generated by previous X-ray pulses. The effect of shocks generated by previous X-ray pulses on lysozyme and carboxyhemoglobin crystals was investigated experimentally. The molecular structure of the lysozyme did not change after shocks with amplitudes up to 140 MPa, but the quality of diffraction data decreased for shocks above 30−45 MPa, indicating crystal damage. In contrast, the molecular structure of carboxyhemoglobin changed after shocks ranging from 35 to 70 MPa. These results suggest the shocks induced brittle failure in lysozyme but plastic deformation in carboxyhemoglobin, and were used to estimate under what conditions X-ray laser crystallography data is likely to be affected by such shocks.

Publication: 1. M. L. Grünbein, L. Foucar, A. Gorel, M. Hilpert, M. Kloos, K. Nass, G. Nass Kovacs, C. M. Roome, R. L. Shoeman, M. Stricker, S. Carbajo, W. Colocho, S. Gilevich, M. Hunter, J. Lewandowski, A. Lutman, J. E. Koglin, T. J. Lane, T. van Driel, J. Sheppard, S. L. Vetter, J. L. Turner, R. B. Doak, T. R. M. Barends, S. Boutet, A. L. Aquila, F. -J. Decker, I. Schlichting and C. A. Stan. Observation of shock-induced protein crystal damage during megahertz serial femtosecond crystallography, Phys. Rev. Research 3, 030146, 2021.<br><br>2. M. L. Grünbein, A. Gorel, L. Foucar, S. Carbajo, W. Colocho, S. Gilevich, E. Hartmann, M. Hilpert, M. Hunter, M. Kloos, J. E. Koglin, T. J. Lane, J. Lewandowski, A. Lutman, K. Nass, G. Nass Kovacs, C. M. Roome, J. Sheppard, R. L. Shoeman, M. Stricker, T. van Driel, S. L. Vetter, R. B. Doak, S. Boutet, A. Aquila, F. -J. Decker, T. R. M. Barends, C. A. Stan and I. Schlichting. Effect of X-ray free-electron laser-induced shockwaves on haemoglobin microcrystals delivered in a liquid jet, Nat. Commun. 12, 1672, 2021.

Presenters

  • Claudiu A Stan

    Department of Physics, Rutgers University Newark, Newark, New Jersey 07102, USA, Rutgers University - Newark

Authors

  • Claudiu A Stan

    Department of Physics, Rutgers University Newark, Newark, New Jersey 07102, USA, Rutgers University - Newark

  • Marie L Grünbein

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Lutz Foucar

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Alexander Gorel

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Mario Hilpert

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Marco Kloos

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Karol Nass

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Gabriela Nass Kovacs

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Christopher M Roome

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Robert L Shoeman

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Miriam Stricker

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Sergio Carbajo

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • William Colocho

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Sasha Gilevich

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Mark Hunter

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Jim Lewandowski

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Alberto Lutman

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Jason E Koglin

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Thomas J Lane

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Tim van Driel

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • John Sheppard

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Sharon L Vetter

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • James Turner

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • R. Bruce Doak

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Thomas R. M. Barends

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany

  • Sebastien Boutet

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Andrew L Aquila

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Franz J Decker

    SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

  • Ilme Schlichting

    Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany