Computational Fluid Dynamics: General II
ORAL · Q24 · ID: 22868
Presentations
-
Effect of the Gauss-Legendre node distribution on wall turbulence in Direct Numerical Simulations of periodic channel flows using a Discontinuous Galerkin method flow solver
ORAL
–
Presenters
-
Marc Bolinches
Authors
-
Marc Bolinches
-
Todd A Oliver
University of Texas at Austin
-
Karl Shulz
University of Texas at Austin
-
-
An RBF-based finite difference discretization of the Navier-Stokes equations: error analysis and applications
ORAL
–
Publication: Chu, T. & Schmidt, O.T. An RBF-based finite difference discretization of the Navier-Stokes equations: error analysis and application to lid-driven cavity flows. AIAA AVIATION 2021 FORUM.
Presenters
-
Tianyi Chu
University of California, San Diego
Authors
-
Tianyi Chu
University of California, San Diego
-
Oliver T. T Schmidt
Mechanical and Aerospace Engineering, University of California, San Diego, University of California, San Diego, University of California San Diego, UC San Diego
-
-
Modeling Natural Ventilation in Refugee Healthcare Shelters
ORAL
–
Publication: Planned paper: Hochschild, J. and Gorlé, C. Modeling Natural Ventilation in Refugee Healthcare Shelters.
Presenters
-
John Hochschild
Stanford University
Authors
-
John Hochschild
Stanford University
-
catherine gorle
Stanford Univ, Stanford
-
-
Data-driven RANS Model Augmentations using Learning and Inference assisted by Feature-space Engineering
ORAL
–
Publication: Generalizable Physics-constrained Modeling using Learning and Inference assisted by Feature Space Engineering, V. Srivastava and K. Duraisamy, arXiv, 2021 (https://arxiv.org/abs/2103.16042)
Presenters
-
Vishal Srivastava
University of Michigan, Ann Arbor
Authors
-
Vishal Srivastava
University of Michigan, Ann Arbor
-
Karthik Duraisamy
University of Michigan, Ann Arbor, University of Michigan
-
-
Parallel solution of Partial Differential Equations on Binarized Octrees
ORAL
–
Publication: Hasbestan, Jaber J., and Inanc Senocak. "Binarized-octree generation for Cartesian adaptive mesh refinement around immersed geometries." Journal of Computational Physics 368 (2018): 179-195.
Presenters
-
shamsulhaq basir
University of Pittsburgh
Authors
-
shamsulhaq basir
University of Pittsburgh
-
Jaber J Hasbestan
University of Pittsburgh
-
Inanc Senocak
University of Pittsburgh
-
-
An adaptive mesh refinement approach for high Reynolds number flows over immersed bodies
ORAL
–
Presenters
-
Wei Hou
California Institute of Technology
Authors
-
Wei Hou
California Institute of Technology
-
Ke Yu
Caltech
-
Benedikt L Dorschner
Caltech
-
Tim Colonius
California Institute of Technology, Caltech
-
-
Data-driven approach to adaptive mesh refinement in PeleC
ORAL
–
Presenters
-
Parvathi Madathil Kooloth
University of Wisconsin - Madison
Authors
-
Parvathi Madathil Kooloth
University of Wisconsin - Madison
-
Bruce A Perry
National Renewable Energy Laboratory
-
-
Second-Moment Closure Modelling of Particle Erosion in a Pipe Elbow
ORAL
–
Publication: Wegt, S., Hartmann, J., Jakirlic, S., Tropea, C., Klink, A., Reitz, R., Engler, T. and Oechsner, M. (2020): Computational Study on the Erosive Surface Degradation in a Pipe Elbow by relevance to internal Combustion Engine Cooling Systems. Paper No. NACE-2020-14801, CORROSION 2020 Conference and Expo, Houston, TX, USA, March 15-19, https://www.onepetro.org/conference-paper/NACE-2020-14801
Presenters
-
Suad Z Jakirlic
Technische Universitat Darmstadt
Authors
-
Sebastian Wegt
Technical University of Darmstadt
-
Jan Hartmann
University of Stuttgart
-
Louis Krueger
Technical University of Darmstadt
-
Jeanette Hussong
Technical University of Darmstadt
-
Suad Z Jakirlic
Technische Universitat Darmstadt
-
-
Piecewise Linear Dimension Reduction as a Regularization Strategy in Data Assimilation for RANS Simulations
ORAL
–
Presenters
-
Pasha Piroozmand
ETH Zürich, ETH Zurich
Authors
-
Pasha Piroozmand
ETH Zürich, ETH Zurich
-
Oliver Brenner
ETH Zürich
-
Patrick Jenny
ETH Zürich, IFD, ETH Zurich, ETH Zurich
-
-
Numerical solution of the three-dimensional incompressible Euler equations using the Characteristic Mapping Method
ORAL
–
Publication: X.-Y. Yin, K. Schneider and J.-C. Nave.<br>A Characteristic Mapping Method for the three-dimensional incompressible Euler equations.<br>Preprint, 07/2021. arXiv:2107.03504<br><br>X.-Y. Yin, O. Mercier, B. Yadav, K. Schneider and J.-C. Nave.<br>A Characteristic Mapping Method for the two-dimensional incompressible Euler equations.<br>J. Comput. Phys., 424, 109781, 2021.
Presenters
-
Kai Schneider
Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université, CNRS, Marseille, France, Aix-Marseille University
Authors
-
Xi Yuan Yin
Department of Mathematics and Statistics, McGill University, Montréal, Québec, Canada
-
Jean-Christophe Nave
Department of Mathematics and Statistics, McGill University, Montréal, Québec, Canada
-
Kai Schneider
Institut de Mathématiques de Marseille (I2M), Aix-Marseille Université, CNRS, Marseille, France, Aix-Marseille University
-