APS Logo

On the Modeling of Mechanotransduction in Flow-Mediated Dilation

ORAL

Abstract

We report a physics based mathematical model to describe the mechanotransduction at the luminal surface of the brachial artery during a flow-mediated dilation (FMD) process. To account for the effect of the released vasodilators in response to the sudden blood flow resurgence, a scalar property is introduced as a signal radially diffusing through the arterial wall, locally affecting its compliance. The model was evaluated on 19 in vivo responses of brachial artery FMD (BAFMD) in 12 healthy subjects. It successfully reproduces the time-dependent dilation of the brachial artery. The predicted artery’s outer-to-inner radius ratio was also found to be consistent with the measurements within an acceptable margin of error. Physically meaningful dimensionless parameters quantifying the artery’s physical state arose from the model, providing a description to how sensitive or responsive the artery is to the changes of wall shear stress (WSS). Future applications of this model, via incorporating inexpensive, relatively quick, and non-invasive imaging, could potentially help detect early stages of developing forms of cardiovascular diseases.

Publication: Sidnawi, B., Chen, Z., Sehgal, C. & Wu, Q. Characterization of arterial flow mediated dilation via a physics-based model. J. Mech. Behav. Biomed. Mater. 107, 103756 (2020).<br><br>Sidnawi, B., Chen, Z., Sehgal, C., Santhanam, S. & Wu, Q. On the modeling of mechanotransduction in flow-mediated dilation. J. Mech. Behav. Biomed. Mater. 120, 104606 (2021).

Presenters

  • Bchara Sidnawi

    Villanova University

Authors

  • Bchara Sidnawi

    Villanova University

  • Zhen Chen

    University of Pennsylvania

  • Chandra Sehgal

    University of Pennsylvania

  • Sridhar Santhanam

    Villanova University

  • Qianhong Wu

    Villanova University