Minisymposia: Fluids Next: Environmental Turbulent Flows Under the Effect of Climate Change
INVITED · H02 · ID: 22734
Presentations
-
Climate Variability and Climate Change: A Unified Framework
ORAL · Invited
–
Publication: Ghil, M. and V. Lucarini, 2020: The physics of climate variability and climate change, Rev. Mod. Phys., 92(3), 035002, doi:10.1103/RevModPhys.92.035002.
Pierini, S., and M. Ghil, 2021: Climate tipping points induced by parameter drift: an excitable system study, Scientific Reports, 11, 11126, doi:10.1038/s41598-021-90138-1.
Vannitsem, S., J. Demaeyer, and M. Ghil, 2021: Extratropical low-frequency variability with ENSO forcing: A reduced-order coupled model study, Journal of Advances in Modeling Earth Systems, 13, e2021MS002530, doi:10.1029/2021MS002530.Presenters
-
Michael Ghil
University of California, Los Angeles
Authors
-
Michael Ghil
University of California, Los Angeles
-
-
The response of the general circulation of the atmosphere to increased CO2
ORAL · Invited
–
Presenters
-
Tiffany Shaw
Authors
-
Tiffany Shaw
-
-
Energy transfers across scales facilitated by the interaction of wind-driven internal waves and ocean fronts
ORAL · Invited
–
Presenters
-
Leif Thomas
Department of Earth System Science, Stanford University
Authors
-
Leif Thomas
Department of Earth System Science, Stanford University
-
-
Small and large scale driving icebergs and glaciers melting
ORAL · Invited
–
Publication: 1. McConnochie C.D., Cenedese C. and McElwaine J.N., Entrainment into particle-laden turbulent plumes. Phys. Rev. Fluids. (Submitted 6/2021)
2. Hester E.W., McConnochie C.D. *, Cenedese C., Couston L-A and Vasil G., 2021 Aspect ratio affects iceberg melting. Phys. Rev. Fluids, 6(2), 023802.
3. Meroni A.N., McConnochie C., Cenedese C., Sutherland B. and Snow K., 2019. Nonlinear influence of Earth's rotation on iceberg melting. J. Fluid Mech., 858, 832-851.
4. Ezhova E., Cenedese C. and Brandt L., 2018. Dynamics of Three-Dimensional Turbulent Wall Plumes and Implications for Estimates of Submarine Glacier Melting. J. Phys. Oceanogr., 48, 1941–1950.
5. FitzMaurice, A., Cenedese C. and Straneo F., 2018. A Laboratory Study of Iceberg Side Melting in Vertically Sheared Flows. J. Phys. Oceanogr., 48, 1367–1373.
6. Ezhova E., Cenedese C. and Brandt L., 2017. Dynamics of a turbulent buoyant plume in a stratified fluid: modelling subglacial discharge in Greenland's fjord¬s. J. Phys. Oceanogr., 47, 2611–2630.
7. FitzMaurice, A., Cenedese C. and Straneo F., 2017. Nonlinear response of iceberg side melting to ocean currents. Geophys. Res. Lett., 44, 5637–5644.
8. FitzMaurice A., Straneo F., Cenedese C. and Andres M., 2016. Effect of a Sheared Flow on Iceberg Motion and Melting. Geophys. Res. Lett., 43, 12520–12527.
9. Mankoff K.D., Straneo F., Cenedese C., Das S.B., Richards C.G. and Singh H., 2016. Structure and Dynamics of a Subglacial Plume in a Greenland Fjord. J. Geophys. Res., 121, doi:10.1002/2016JC011764.
10. Cenedese C. and Gatto V.M., 2016. Impact of a Localized Source of Subglacial Discharge on the Heat Flux and Submarine Melting of a Tidewater Glacier: A Laboratory Study. J. Phys. Oceanogr., 46, 3155–3163.
11. Cenedese C. and Gatto V.M., 2016. Impact of Two Plumes' Interaction on Submarine Melting of Tidewater Glaciers: A Laboratory Study. J. Phys. Oceanogr., 46, 361–367.
12. Straneo F. and Cenedese C., 2015. Dynamics of Greenland's glacial fjords and their role in climate. Annual Review of Marine Science, 7 (1), doi:10.1146/annurev-marine-010213-135133.
13. Sciascia R., Cenedese C., Nicolì D., Heimbach P. and Straneo F. 2014 Impact of periodic intermediary flows on submarine melting of a Greenland glacier. J. Geophys. Res., 119, doi:10.1002/2014JC009953.
14. Sciascia R., Straneo F., Cenedese C. and Heimbach P., 2013 Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118, 2492-2506.Presenters
-
Claudia Cenedese
Woods Hole Ocean Inst
Authors
-
Claudia Cenedese
Woods Hole Ocean Inst
-
-
New ways for dynamical prediction of extreme heat waves: rare event simulations and stochastic process-based machine learning.
ORAL · Invited
–
Publication: 1. F. Ragone and F. Bouchet, 2020, Computation of extremes values of time averaged observables in climate models with large deviation techniques, J. Stat. Phys., pp 1–29, arXiv:1907.05762, [pdf], https://doi.org/10.1007/s10955-019-02429-7.
2. C. Herbert, R. Caballero and F. Bouchet, 2020, Atmospheric bistability and abrupt transitions to superrotation: wave-jet resonance and Hadley cell feedbacks, Journal of the Atmospheric Sciences, vol. 77, no. 1, https://doi.org/10.1175/JAS-D-19-0089.1, arXiv:1905.12401.
3. E. Simonnet, J. Roland and F. Bouchet, Multistability and rare spontaneous transitions in barotropic β-plane turbulence, Journal of atmospherical sciences, 78, 6, 1889–1911, https://doi.org/10.1175/JAS-D-20-0279.1, arXiv:2009.09913.
4. F Ragone, F Bouchet, 2021, Rare event algorithm study of extreme warm summers and heat waves over Europe, Geophysical Research Letters, 48, e2020GL091197.https://doi.org/10.1029/2020GL091197 arXiv:2009.02519.
5. V. Jacques-Dumas, F. Ragone, F. Bouchet, P. Borgnat and P. Abry, 2021, Deep Learning based Extreme Heatwave Forecast, submitted to IEEE TPAMI. arXiv:2103.09743.Presenters
-
Freddy Bouchet
CNRS
Authors
-
Freddy Bouchet
CNRS
-
Francesco Ragone
UC Louvain
-
Dario Lucente
ENS de Lyon
-
George Miloshevich
ENS de Lyon
-
Corentin Herbert
CNRS and ENS de Lyon
-