Minisymposia: Fluids Next: Environmental Turbulent Flows Under the Effect of Climate Change
INVITED · H02 · ID: 22734
Presentations
-
Climate Variability and Climate Change: A Unified Framework
ORAL · Invited
–
Publication: Ghil, M. and V. Lucarini, 2020: The physics of climate variability and climate change, Rev. Mod. Phys., 92(3), 035002, doi:10.1103/RevModPhys.92.035002.<br>Pierini, S., and M. Ghil, 2021: Climate tipping points induced by parameter drift: an excitable system study, Scientific Reports, 11, 11126, doi:10.1038/s41598-021-90138-1.<br>Vannitsem, S., J. Demaeyer, and M. Ghil, 2021: Extratropical low-frequency variability with ENSO forcing: A reduced-order coupled model study, Journal of Advances in Modeling Earth Systems, 13, e2021MS002530, doi:10.1029/2021MS002530.
Presenters
-
Michael Ghil
University of California, Los Angeles
Authors
-
Michael Ghil
University of California, Los Angeles
-
-
The response of the general circulation of the atmosphere to increased CO2
ORAL · Invited
–
Presenters
-
Tiffany Shaw
Authors
-
Tiffany Shaw
-
-
Energy transfers across scales facilitated by the interaction of wind-driven internal waves and ocean fronts
ORAL · Invited
–
Presenters
-
Leif Thomas
Department of Earth System Science, Stanford University
Authors
-
Leif Thomas
Department of Earth System Science, Stanford University
-
-
Small and large scale driving icebergs and glaciers melting
ORAL · Invited
–
Publication: 1. McConnochie C.D., Cenedese C. and McElwaine J.N., Entrainment into particle-laden turbulent plumes. Phys. Rev. Fluids. (Submitted 6/2021)<br>2. Hester E.W., McConnochie C.D. *, Cenedese C., Couston L-A and Vasil G., 2021 Aspect ratio affects iceberg melting. Phys. Rev. Fluids, 6(2), 023802.<br>3. Meroni A.N., McConnochie C., Cenedese C., Sutherland B. and Snow K., 2019. Nonlinear influence of Earth's rotation on iceberg melting. J. Fluid Mech., 858, 832-851. <br>4. Ezhova E., Cenedese C. and Brandt L., 2018. Dynamics of Three-Dimensional Turbulent Wall Plumes and Implications for Estimates of Submarine Glacier Melting. J. Phys. Oceanogr., 48, 1941–1950.<br>5. FitzMaurice, A., Cenedese C. and Straneo F., 2018. A Laboratory Study of Iceberg Side Melting in Vertically Sheared Flows. J. Phys. Oceanogr., 48, 1367–1373.<br>6. Ezhova E., Cenedese C. and Brandt L., 2017. Dynamics of a turbulent buoyant plume in a stratified fluid: modelling subglacial discharge in Greenland's fjord¬s. J. Phys. Oceanogr., 47, 2611–2630. <br>7. FitzMaurice, A., Cenedese C. and Straneo F., 2017. Nonlinear response of iceberg side melting to ocean currents. Geophys. Res. Lett., 44, 5637–5644.<br>8. FitzMaurice A., Straneo F., Cenedese C. and Andres M., 2016. Effect of a Sheared Flow on Iceberg Motion and Melting. Geophys. Res. Lett., 43, 12520–12527. <br>9. Mankoff K.D., Straneo F., Cenedese C., Das S.B., Richards C.G. and Singh H., 2016. Structure and Dynamics of a Subglacial Plume in a Greenland Fjord. J. Geophys. Res., 121, doi:10.1002/2016JC011764. <br>10. Cenedese C. and Gatto V.M., 2016. Impact of a Localized Source of Subglacial Discharge on the Heat Flux and Submarine Melting of a Tidewater Glacier: A Laboratory Study. J. Phys. Oceanogr., 46, 3155–3163. <br>11. Cenedese C. and Gatto V.M., 2016. Impact of Two Plumes' Interaction on Submarine Melting of Tidewater Glaciers: A Laboratory Study. J. Phys. Oceanogr., 46, 361–367. <br>12. Straneo F. and Cenedese C., 2015. Dynamics of Greenland's glacial fjords and their role in climate. Annual Review of Marine Science, 7 (1), doi:10.1146/annurev-marine-010213-135133. <br>13. Sciascia R., Cenedese C., Nicolì D., Heimbach P. and Straneo F. 2014 Impact of periodic intermediary flows on submarine melting of a Greenland glacier. J. Geophys. Res., 119, doi:10.1002/2014JC009953.<br>14. Sciascia R., Straneo F., Cenedese C. and Heimbach P., 2013 Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118, 2492-2506.
Presenters
-
Claudia Cenedese
Woods Hole Ocean Inst
Authors
-
Claudia Cenedese
Woods Hole Ocean Inst
-
-
New ways for dynamical prediction of extreme heat waves: rare event simulations and stochastic process-based machine learning.
ORAL · Invited
–
Publication: 1. F. Ragone and F. Bouchet, 2020, Computation of extremes values of time averaged observables in climate models with large deviation techniques, J. Stat. Phys., pp 1–29, arXiv:1907.05762, [pdf], https://doi.org/10.1007/s10955-019-02429-7.<br>2. C. Herbert, R. Caballero and F. Bouchet, 2020, Atmospheric bistability and abrupt transitions to superrotation: wave-jet resonance and Hadley cell feedbacks, Journal of the Atmospheric Sciences, vol. 77, no. 1, https://doi.org/10.1175/JAS-D-19-0089.1, arXiv:1905.12401.<br>3. E. Simonnet, J. Roland and F. Bouchet, Multistability and rare spontaneous transitions in barotropic β-plane turbulence, Journal of atmospherical sciences, 78, 6, 1889–1911, https://doi.org/10.1175/JAS-D-20-0279.1, arXiv:2009.09913.<br>4. F Ragone, F Bouchet, 2021, Rare event algorithm study of extreme warm summers and heat waves over Europe, Geophysical Research Letters, 48, e2020GL091197.https://doi.org/10.1029/2020GL091197 arXiv:2009.02519.<br>5. V. Jacques-Dumas, F. Ragone, F. Bouchet, P. Borgnat and P. Abry, 2021, Deep Learning based Extreme Heatwave Forecast, submitted to IEEE TPAMI. arXiv:2103.09743.
Presenters
-
Freddy Bouchet
CNRS
Authors
-
Freddy Bouchet
CNRS
-
Francesco Ragone
UC Louvain
-
Dario Lucente
ENS de Lyon
-
George Miloshevich
ENS de Lyon
-
Corentin Herbert
CNRS and ENS de Lyon
-