Reynolds number effect on jet control and its scaling
POSTER
Abstract
This work aims to investigate experimentally the effect of Reynolds number \textit{Re} on the mixing effectiveness of a turbulent jet manipulated using a single unsteady radial minijet. A novel artificial intelligence (AI) control system has been developed to manipulate the turbulent jet. The \textit{Re }examined is 8000-50000 based on the time-averaged jet exit velocity $\overline {U_{j} } $ \begin{figure}[htbp] \centerline{\includegraphics[width=0.13in,height=0.19in]{030820201.eps}} \label{fig1} \end{figure} and the nozzle exit diameter $D$. The control parameters include the mass flow rate ratio $C_{m}$ of the minijet to main jet, the frequency ratio $f_{e}$/$f_{\mathrm{0}}$ of the minijet excitation frequency $f_{e}$ to the preferred-mode frequency $f_{\mathrm{0\thinspace }}$of main jet, the duty cycle $\alpha ,$ and the diameter ratio $d$/$D$ of the minijet to the main jet. Jet mixing is quantified using $K_{e}$/$K_{\mathrm{0}}$, where $K $is the decay rate of the jet centreline mean velocity, and subscripts $e$ and 0 denote the manipulated and unforced jets, respectively. Empirical scaling analysis of the AI-obtained experimental data reveals that the relationship $K_{e} = g_{\mathrm{1}}$ ($C_{m}$, $f_{e}$/$f_{\mathrm{0}}$, $\alpha $, $d$/\textit{D, Re, K}$_{\mathrm{0}})$ may be reduced to $K_{e}$/$K_{\mathrm{0}} \quad = \quad g_{\mathrm{2}}$ \begin{figure}[htbp] \centerline{\includegraphics[width=0.19in,height=0.17in]{030820202.eps}} \label{fig2} \end{figure} $(\zeta ),$ where $\zeta \quad = \quad \frac{\sqrt {MR} }{\alpha }\left( {\frac{d}{D}} \right)^{n}\frac{1}{Re}\left( {\frac{f_{e} }{f_{0} }} \right)^{m}$ ($n$ and $m$ are power indices) \begin{figure}[htbp] \centerline{\includegraphics[width=1.04in,height=0.28in]{030820203.eps}} \label{fig3} \end{figure} ,$\sqrt {MR} \equiv C_{m} \frac{D}{d}$ \begin{figure}[htbp] \centerline{\includegraphics[width=0.71in,height=0.23in]{030820204.eps}} \label{fig4} \end{figure} and $g_{\mathrm{2}}$ is approximately a linear function. The scaling law is discussed, along with the physical meanings of the dimensionless parameters $K_{e}$/$K_{0}$, $\zeta $, $\frac{\sqrt {MR} }{\alpha }\left( {\frac{d}{D}} \right)^{n}\frac{1}{Re}$ \begin{figure}[htbp] \centerline{\includegraphics[width=0.69in,height=0.27in]{030820205.eps}} \label{fig5} \end{figure} and $\left( {\frac{f_{e} }{f_{0} }} \right)^{m}$ \begin{figure}[htbp] \centerline{\includegraphics[width=0.33in,height=0.28in]{030820206.eps}} \label{fig6} \end{figure} .
Authors
-
Dewei Fan
Harbin Institute of Technology (Shenzhen), China
-
Zhi Wu
Harbin Institute of Technology (Shenzhen), China, Seoul National University
-
Arun Kumar Perumal
Indian Institute of Technology Kanpur, India
-
Bernd R. Noack
Harbin Institute of Technology (Shenzhen), China, Harbin Institute of Technology (Shenzhen), Center of Turbulence Control, Harbin Institute of Technology, Shenzhen 518058, China, HIT, China and TU Berlin, Germany
-
Yu Zhou
Harbin Institute of Technology (Shenzhen), China