APS Logo

On the stochastic modeling of Lagrangian velocity and acceleration in turbulent flows

ORAL

Abstract

We propose to answer the following question: can we build up an infinitely differentiable stochastic process, such that asymptotically, when the Reynolds number goes to infinity, it becomes irregular (in a Holder sense) and intermittent (in a way we will clarify)? This has importance while modeling velocity and acceleration of particles following their trajectories in a turbulent flow. We propose such a process as a solution of a stochastic differential equation, making it causal. We proceed with analytical and numerical solutions, and compare against experimental and numerical data. Come, it will be fun.

Authors

  • Laurent Chevillard

    Laboratoire De Physique De l'ENS De Lyon

  • Bianca Viggiano

    Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon, USA, Portland State University

  • Jan Friedrich

    Laboratoire De Physique De l'ENS De Lyon

  • Romain Volk

    LP ENS de Lyon (Lyon), Laboratoire De Physique De l'ENS De Lyon, Laboratoire de Physique, ENS de Lyon, Univ Lyon, CNRS, 69364 Lyon CEDEX 07, France., Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France

  • Mickael Bourgoin

    Laboratoire De Physique De l'ENS De Lyon, ENS Lyon, Physics Laboratory, CNRS / ENS de Lyon, Laboratoire de Physique, ENS de Lyon, Univ Lyon, CNRS, 69364 Lyon CEDEX 07, France., Laboratoire de Physique, ENS de Lyon, CNRS, France

  • Raul Bayoan Cal

    Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon, USA, Department of Mechanical and Materials Engineering, Portland State University, Portland State University