Machine Learning and Data Driven Models I
ORAL · F32
Presentations
-
From Deep to Physics-Informed Learning of Turbulence: Diagnostics
ORAL
–
Presenters
-
Michael Chertkov
Los Alamos National Laboratory, Los Alamos Natl Lab
Authors
-
Michael Chertkov
Los Alamos National Laboratory, Los Alamos Natl Lab
-
Oliver Hennigh
Los Alamos National Laboratory
-
Ryan King
National Renewable Energy Laboratory
-
Arvind T Mohan
Los Alamos National Laboratory
-
-
Neural Network Powered Adjoint Methods - Gradient Based Shape Optimization with Deep Learning
ORAL
–
Presenters
-
Dana Lynn Ona Lansigan
Univ of California - Berkeley
Authors
-
Dana Lynn Ona Lansigan
Univ of California - Berkeley
-
Chiyu Max Jiang
Univ of California - Berkeley, UC Berkeley, Univ of California - Berkeley, Lawrence Berkeley National Laboratory, Univ of California - Berkeley, Lawrence Berkeley National Labratory
-
Philip S Marcus
Univ of California - Berkeley, University of California, Berkeley
-
-
Data-driven discretization of PDEs
ORAL
–
Presenters
-
Yohai Bar-Sinai
Harvard SEAS
Authors
-
Yohai Bar-Sinai
Harvard SEAS
-
Stephan Hoyer
Google
-
Dmitrii Kochkov
Google, University of Illinois at Urbana-Champaign
-
Jason Hickey
Google
-
Michael Phillip Brenner
Harvard SEAS, Harvard University, Harvard Univ
-
-
Surrogate Modeling of High-Order Physics-Based Fluid Modeling Tools
ORAL
–
Presenters
-
Robert Zacharias
GE Global Research
Authors
-
Nicholas Magina
GE Global Research
-
James Tallman
GE Global Research
-
Robert Zacharias
GE Global Research
-
-
Bridging simulation and deep learning - convolutional neural networks on unstructured grids
ORAL
–
Presenters
-
Chiyu Max Jiang
Univ of California - Berkeley, UC Berkeley, Univ of California - Berkeley, Lawrence Berkeley National Laboratory, Univ of California - Berkeley, Lawrence Berkeley National Labratory
Authors
-
Chiyu Max Jiang
Univ of California - Berkeley, UC Berkeley, Univ of California - Berkeley, Lawrence Berkeley National Laboratory, Univ of California - Berkeley, Lawrence Berkeley National Labratory
-
Karthik Kashinath
Lawrence Berkeley National Laboratory
-
Philip S Marcus
Univ of California - Berkeley, University of California, Berkeley
-
Mr Prabhat
Lawrence Berkeley National Laboratory
-
-
Physics-Informed Generative Learning to Predict Unresolved Physics in Complex Systems
ORAL
–
Presenters
-
Jinlong Wu
Virginia Tech
Authors
-
Jinlong Wu
Virginia Tech
-
Yang Zeng
Virginia Tech
-
Karthik Kashinath
Lawrence Berkeley National Laboratory
-
Adrian Albert
Lawrence Berkeley National Laboratory
-
Mr Prabhat
Lawrence Berkeley National Laboratory
-
Heng Xiao
Virginia Tech
-
-
A transfer learning approach for data-driven turbulence modeling
ORAL
–
Presenters
-
Rui Fang
Harvard University
Authors
-
Rui Fang
Harvard University
-
David Sondak
Harvard University
-
Pavlos Protopapas
Harvard University
-
Sauro Succi
Istituto per le Applicazioni del Calcolo CNR, Rome, Center of Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Rome, IAC/NRC
-
-
Machine Learning to Improve RANS Turbulent Kinetic Energy Transport Equation
ORAL
–
Presenters
-
David S Ching
Stanford University, Stanford Univ
Authors
-
David S Ching
Stanford University, Stanford Univ
-
Andrew J Banko
Stanford University, Stanford Univ
-
John Kelly Eaton
Stanford University, Stanford Univ
-
-
Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework
ORAL
–
Presenters
-
Heng Xiao
Virginia Tech
Authors
-
Heng Xiao
Virginia Tech
-
Jinlong Wu
Virginia Tech
-
Jianxun Wang
University of Notre Dame
-
Eric G Paterson
Virginia Tech
-
-
Interpretability of Machine Learning Models for the Reynolds Stress Tensor in Reynolds-Averaged Navier-Stokes Simulations
ORAL
–
Presenters
-
Andrew J Banko
Stanford University, Stanford Univ
Authors
-
Andrew J Banko
Stanford University, Stanford Univ
-
David S Ching
Stanford University, Stanford Univ
-
Julia Ling
Citrine Informatics
-
John Kelly Eaton
Stanford University, Stanford Univ
-