Vortex network community based reduced-order force model
ORAL
Abstract
We characterize the vortical wake interactions by utilizing network theory and cluster-based approaches, and develop a data-inspired unsteady force model. In the present work, the vortical interaction network is defined by nodes representing vortical elements and the edges quantified by induced velocity measures amongst the vortices. The full vorticity field is reduced to a finite number of vortical clusters based on network community detection algorithm, which serves as a basis for a skeleton network that captures the essence of the wake dynamics. We use this reduced representation of the wake to develop a data-inspired reduced-order force model that can predict unsteady fluid forces on the body. The overall formulation is demonstrated for laminar flows around canonical bluff body wake and stalled flow over an airfoil. We also show the robustness of the present network-based model against noisy data, which motivates applications towards turbulent flows and experimental measurements.
–
Authors
-
Muralikrishnan Gopalakrishnan Meena
Florida State Univ
-
Aditya Nair
Florida State Univ
-
Kunihiko Taira
Florida State University, Florida State Univ