Decontamination of chemical tracers in droplets by a submerging thin film flow.

ORAL

Abstract

We investigate the decontamination of chemical tracers contained in small viscous drops by a submerging falling film. This problem has applications in the decontamination of hazardous chemicals, following accidental releases or terrorist attacks. Toxic droplets lying on surfaces are cleaned by spraying a liquid decontaminant over the surface. The decontaminant film submerges the droplets, without detaching them, in order to neutralize toxic chemicals in the droplets. The decontamination process is controlled by advection, diffusion and reaction processes near the drop-film interface. Chemical tracers dissolve into the film flow forming a thin diffusive boundary layer at the interface. The chemical tracers are then neutralized through a reaction with a chemical decontaminant transported in the film. We assume in this work that the decontamination process occurs mainly in the film phase owing to low solubility of the decontaminant in the drop phase. We analyze the impact of the reaction time scale, assuming first-order reaction, in relation with the characteristic advection and diffusion time scales in the case of a single droplet. Using theoretical, numerical and experimental means, we find that the reaction time scale need to be significantly smaller than the characteristic time scale in the diffusive boundary layer in order to enhance noticeably the decontamination of a single toxic droplet. We discuss these results in the more general case of the decontamination of a large number of droplets.

Authors

  • Julien R. Landel

    DAMTP, University of Cambridge

  • Harry McEvoy

    Dstl

  • Stuart Dalziel

    DAMTP, University of Cambridge, Univ of Cambridge, University of Cambridge