Numerical studies of a confined volatile binary fluid subject to a horizontal temperature gradient

ORAL

Abstract

Our fundamental understanding of convection in a layer of nonisothermal binary fluid with free surface in the presence of noncondensable gases, such as air, is still limited. In relatively thick liquid layers, the flow is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity in the liquid layer. Unlike buoyancy, both thermocapillarity and solutocapillarity depend sensitively on the boundary conditions at the liquid-vapor interface. Recent experimental studies showed that the composition of both the liquid and the gas phases have significant effects on the convection pattern. In particular, in a methanol-water mixture, four different flow regimes were identified on a map spanned by the concentration of methanol in the liquid and the concentration of air in the gas, which are thermocapillarity-dominated flow (TDF), solutocapillarity-dominated flow (SDF), unsteady flow (UF) and reversed flow (RF). This talk will present a comprehensive numerical model for a confined volatile binary fluid subject to a horizontal temperature gradient in the presence of noncondensable gases, and illustrate how the composition of both phases affect thermocapillarity and solutocapillarity. The numerical results will also be compared with experiments.

Authors

  • Tongran Qin

    Georgia Institute of Technology

  • Roman Grigoriev

    Georgia Institute of Technology