Aerodynamic Coupling between Two Side-by-Side Piezoelectric Harvesters in Grid Turbulence
ORAL
Abstract
Experimental and analytical results relating to the extraction of fluidic energy from decaying homogeneous and isotropic turbulence using two side-by-side piezoelectric beams are reported. Turbulence carries mechanical energy distributed over a range of temporal and spatial scales and the resulting interaction of these scales with the immersed piezoelectric beams creates a strain field in the beam which generates electric charge. Experiments are carried out in a large scale wind tunnel in which a passive turbulence-generating grid is used to excite various piezoelectric cantilever beam configurations positioned parallel to the flow with different gap widths between the beams at various distances from the grids and for different flow velocities. We observe that the aerodynamic coupling is stronger at higher velocities and when longer beams are paired together and decays exponentially with increasing gap width between the beams. More importantly, however, it is observed that the aerodynamic coupling due to the presence of a second beam greatly improves the energy harvesting process, so much so that the average power generated per beam increases by up to 20 times, potentially allowing for significant power extraction from a random, non-resonant phenomenon such as turbulence.
–
Authors
-
Amir Danesh-Yazdi
Penn State Univ, Erie
-
Yiannis Andreopoulos
City College of New York, The City College of New York
-
Niell Elvin
City College of New York