Simulating incompressible flow on moving meshfree grids using General Finite Differences (GFD)
ORAL
Abstract
We simulate incompressible flow around an oscillating cylinder at different Reynolds numbers using General Finite Differences (GFD) on a meshfree grid. We evolve the meshfree grid by treating each grid node as a particle. To compute velocities and accelerations, we consider the particles at a particular instance as Eulerian observation points. The incompressible Navier-Stokes equations are directly discretized using GFD with boundary conditions enforced using a sharp interface treatment. Cloud sizes are set such that the local approximations use only 16 neighbors. To enforce incompressibility, we apply a semi-implicit approximate projection method. To prevent overlapping particles and formation of voids in the grid, we propose a particle regularization scheme based on a local minimization principle. We validate the GFD results for an oscillating cylinder against the lattice Boltzmann method and find good agreement.
–
Authors
-
Yaroslav Vasyliv
Georgia Institute of Technology
-
Alexander Alexeev
Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Georgia Tech