Energy based hybrid turbulence modeling
ORAL
Abstract
Traditional hybrid approaches exhibit deficiencies when used for fluctuating smooth-wall separation and reattachment necessitating ad-hoc delaying functions and model tuning making them no longer useful as a predictive tool. Additionally, complex geometries and flows often require high cell aspect-ratios and large grid gradients as a compromise between resolution and cost. Such transitions and inconsistencies in resolution detrimentally effect the fidelity of the simulation. We present the continued development of a new hybrid RANS/LES modeling approach specifically developed to address these challenges. In general, modeled turbulence is returned to resolved scales by reduced or negative model viscosity until a balance between theoretical and actual modeled turbulent kinetic energy is attained provided the available resolution. Anisotropy in the grid and resolved field are directly integrated into this balance. A viscosity-based correction is proposed to account for resolution inhomogeneities. Both the hybrid framework and resolution gradient corrections are energy conserving through an exchange of resolved and modeled turbulence.
–
Authors
-
Sigfried Haering
University of Texas at Austin
-
Robert Moser
University of Texas at Austin, Univ of Texas, Austin