Hemodynamics in an Aorta with Bicuspid and Trileaflet Valves

ORAL

Abstract

Bicuspid aortic valve (BAV) is a congenital heart defect that has been associated with serious aortopathies, such as ascending aortic aneurysm, aortic stenosis, aortic regurgitation, infective endocarditis, aortic dissection, calcific aortic valve and dilatation of ascending aorta. Two main hypotheses - the genetic and the hemodynamic are discussed in literature to explain the development and progression of aortopathies in patients with BAV. In this study we seek to investigate the possible role of hemodynamic factors as causes of BAV-associated aortopathy. We employ the Curvilinear Immersed Boundary (CURVIB) method coupled with an efficient thin-shell finite element (TS-FE) formulation for tissues to carry out fluid-structure interaction simulations of a healthy tri-leaflet aortic valve (TAV) and a BAV placed in the same anatomic aorta. The computed results reveal major differences between the TAV and BAV flow patterns. These include: the dynamics of the aortic valve vortex ring formation and break up; the large scale flow patterns in the ascending aorta; and the shear stress magnitude on the aortic wall. The computed results are in qualitative agreement with in vivo Magnetic Resonance Imaging (MRI) data and suggest that the linkages between BAV aortopathy and hemodynamics deserve further investigation.

Authors

  • Anvar Gilmanov

    Univ of Minn - Minneapolis

  • Fotis Sotiropoulos

    St. Anthony Falls Lab., University of Minnesota, St. Anthony Falls Lab. University of Minnesota, Saint Anthony Falls Laboratory, Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Univ of Minn - Minneapolis, University of Minnesota, St. Anthony Falls Laboratory, University of Minnesota, Saint Anthony Falls Laboratory, University of Minnesota