Effects of Turbine Spacing in Very Large Wind Farms
ORAL
Abstract
The Dynamic Wake Meandering model(DWM) by Larsen et al.(2007) is considered state of the art for modelling the wake behind a wind turbine. DWM assumes a quasi-steady wake deficit transported as a passive tracer by large atmospheric scales. The approach is also applied to wake interaction within wind farms, although certain aspects of the complex wake interaction are not captured, see Churchfield et al.(2014). Recent studies have shown how turbines introduce low frequencies in the wake, which could describe some of the shortcomings. Chamorro et al.(2015) identified three regions of different lengths scales. Iungo et al.(2013) related low frequencies to the hub vortex instability. Okulov et al.(2014) found Strouhal numbers in the far wake stemming from the rotating helical vortex core. Simulations by Andersen et al.(2013) found low frequencies to be inherent in the flow inside an infinite wind farm. LES simulations of large wind farms are performed with full aero-elastic Actuator Lines. The simulations investigate the inherent dynamics inside wind farms in the absence of atmospheric turbulence compared to cases with atmospheric turbulence. Resulting low frequency structures are inherent in wind farms for certain turbine spacings and affect both power production and loads.
–
Authors
-
S{\O}ren Juhl Andersen
Technical University of Denmark
-
Jens N{\O}rk{\AE}r S{\O}rensen
Technical University of Denmark
-
Robert Flemming Mikkelsen
Technical University of Denmark