Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model
ORAL
Abstract
Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.
–
Authors
-
Marianne Monastero
Rensselaer Polytechnic Institute
-
Annika Lindstrom
Rensselaer Polytechnic Institute
-
Michael Beyar
The Boeing Company
-
Michael Amitay
Center for Flow Physics and Control, Department of Mechanical, Nuclear and Aerospace Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA, Rensselaer Polytech Inst, RPI, Rensselaer Polytechnic Institute