3D separation over a wall-mounted hemisphere in steady and pulsatile flow

ORAL

Abstract

Flow separation over a surface-mounted hemispheriod is prevalent in countless applications, both under steady (constant freestream velocity) and unsteady flow over the protuberance. Previous studies of 3D separation have been limited to steady inflow conditions. In biological and geophysical flows, pulsatile flow conditions are much more commonly observed, yet such conditions have not been well studied. Primarily motivated by previous studies of the flow observed in various human vocal fold pathologies, such as polyps, our research aims to fill the knowledge gap in unsteady 3D flow separation. This is achieved by characterizing surface pressure fields and velocity fields, focused primarily on the vortical flow structures and dynamics that occur around a hemispheroid protuberance under pulsatile flow conditions. Surface static pressure and two-dimensional, instantaneous and phase-averaged, particle image velocimetry data in steady and pulsatile flow are presented and compared. Coherent vortical flow structures have been identified using the $\lambda_{ci}$ vortex identification criterion. This analysis has revealed a novel set of flow structures dependent on the pulsatile flow forcing function.

Authors

  • Ian A. Carr

    George Washington University

  • Michael Plesniak

    George Washington University, George Washington Univ