Revised Capillary Breakup Rheometer Method

ORAL

Abstract

Rather than integrate the one-dimensional equation of motion for a capillary breakup rheometer, we take the axial derivative of that equation. This avoids the determination of the axial force with all of its complications and correction factors. The resulting evolutionary equation that involves either two or four derivatives of the capillary radius as a function of the axial coordinate determines the ratio of elongational viscosity to surface tension coefficient. We examine several silicone and olive oils to show the accuracy of the method for Newtonian fluids. We will discuss our surface tension measurement techniques and briefly describe measurements of viscoelastic materials, including saliva.

Authors

  • Louise Lu

    University of Michigan

  • William Schultz

    University of Michigan

  • Michael Solomon

    University of Michigan