Density fluctuations and topological structures in collective surface motion of microswimmers

ORAL

Abstract

Active matter that consists of self-propelled particles, such as bacterial suspensions and assays of self-driven biofilaments, can exhibit collective motions with large-scale complex flows and topological defect dynamics. Using a Doi-Onsager kinetic theory, we study suspensions of microswimmers confined to an air/liquid interface, and identify correlations between particle density fluctuations, defect structures, nematic order, and surface flows. When considering a free-standing liquid film where the microswimmers are distributed on the air/liquid interfaces, we capture hydrodynamic coupling of the two active surface, characterized by synchronization of motile disclination defects. We estimate the effective ``penetration distance'' between the two coupled surfaces through a linear stability analysis.

Authors

  • Tong Gao

    Courant Institute of Mathematical Sciences

  • Michael Shelley

    Courant Institute, NYU, Courant Institute of Mathematical Sciences