Numerical simulation of droplet formation regimes and sizes in microfluidic T-junction devices

ORAL

Abstract

The T-junction geometry has been widely used for producing monodisperse droplets in microfluidic devices. Droplet formation regimes and sizes are expected to depend on a variety of conditions including flow rates, capillary number, channel geometry and viscosity ratio. Experiments have investigated drop production at a T-junction in a narrow control parameter space and developed analytical models for specific operating regimes. In this study, we take advantage of numerical simulations based on volume-of-fluid method to explore this broad parameter space systematically, and contrast our results with prior experimental data. We find our simulations predict well the regimes of squeezing, dripping and jetting. We also observe that our drop size data is in good agreement with three different experimental reports. Although our results match experimental data, the analytical models do not agree with each other since they are based on specific operating conditions. We use numerical simulations to elucidate the missing components in the physics of drop formation at a T-junction, with an attempt to reconcile existing analytical models.

Authors

  • Mehdi Nekouei

    Texas Tech University, Department of Chemical Engineering

  • Siva Vanapalli

    Texas Tech University, Department of Chemical Engineering, Texas Tech University