A Particle-Particle Collision Model for Smoothed Profile Method
ORAL
Abstract
Smoothed Profile Method (SPM) is a type of continuous forcing approach that adds the particles to the fluid using a forcing. The fluid-structure interaction is through a diffuse interface which avoids sudden transition from solid to fluid. The SPM simulation as a monolithic approach uses an indicator function field in the whole domain based on the distance from each particle's boundary where the possible particle-particle interaction can occur. A soft sphere potential based on the indicator function field has been defined to add an artificial pressure to the flow pressure in the potential overlapping regions. Thus, a repulsion force is obtained to avoid overlapping. Study of two particles which impulsively start moving in an initially uniform flow shows that the particle in the wake of the other one will have less acceleration leading to frequent collisions. Various Reynolds numbers and initial distances have been chosen to test the robustness of the method. Study of Drafting-Kissing Tumbling of two cylindrical particles shows a deviation from the benchmarks due to lack of rotation modeling. The method is shown to be accurate enough for simulating particle-particle collision and can easily be extended for particle-wall modeling and for non-spherical particles.
–
Authors
-
Fazlolah Mohaghegh
University of Iowa
-
John Mousel
University of Iowa
-
H.S. Udaykumar
University of Iowa