Experimental study on gas-liquid bubbly turbulent flow in a large square duct
ORAL
Abstract
Gas-liquid bubbly turbulent flow exists in many industrial areas. Therefore, many experiments for gas-liquid bubbly turbulent flow have been carried out in circular pipes for bubbly turbulent flow model. However, the cross-section of many flow passages are not the circular shape. Since the secondary flow of 2nd kind for single phase turbulent flow in a non-circular duct is well-known, the interaction between the secondary flow of 2nd kind and bubbles in gas-liquid bubbly turbulent flow in the non-circular duct could play an important role. In this study, in order to validate gas-liquid bubbly turbulent flow model in the non-circular duct, measurements were performed in a large square (136mm x 136mm) duct with duct length of 2.8m. The distributions of primary velocity, void fraction and turbulent Reynolds stresses were measured by a hot film probe. It is well-known that the primary velocity distribution of the bubbly flow in a circular pipe has a peak in the pipe center. In contrast, it was found that the primary velocity peaked near the corner of the square duct. In addition, primary velocity distribution changes under various flow conditions were discussed by measuring data of the void fraction and turbulent Reynolds stresses.
–
Authors
-
HaoMin Sun
Department of Nuclear Engineering, Kyoto University
-
Tomoaki Kunugi
Department of Nuclear Engineering, Graduate School of Engineering, Kyoto University, Department of Nuclear Engineering, Kyoto University
-
Hideo Nakamura
Nuclear Safety Research Center, JAEA