Planar Imaging of Mach 3 Hypermixer Flowfields with Varying Geometry

ORAL

Abstract

At the high Mach number associated with hypersonic flight, potentially excessive pressure loads and changes in air chemistry necessitate supersonic flow within a scramjet combustor. A form of mixing enhancement is therefore required to enable proper mixing of the fuel and air streams and maintain efficient combustion. Hypermixers have shown promise as an effective mixing enhancement strategy, utilizing streamwise vorticity to enhance large scale transport and micromixing rather than relying solely on turbulence. An experimental investigation of several strut-based Mach 3 hypermixing flowfields is being conducted, concentrating on the effect of geometric variations (ramp angle and spacing) on the flowfield mixing characteristics. Global flow features are examined through the use of planar laser scattering (PLS) and two-component particle image velocimetry (PIV). The evolution of streamwise vortical structures is observed at different streamwise locations using stereoscopic PIV. Finally, the interaction of these vorticies with an injected scalar is studied by combining the use of two- and three-component PIV with planar laser-induced fluorescence (PLIF).

Authors

  • Ross Burns

    The University of Texas at Austin

  • Noel Clemens

    The University of Texas at Austin, Austin, TX, The University of Texas at Austin