Turbulent Rayleigh-Taylor flow driven by time-varying accelerations

ORAL

Abstract

We report on numerical simulations of turbulent Rayleigh-Taylor flow subject to variable acceleration histories. The acceleration profiles were inspired by experiments and theoretical studies, and include an impulsive acceleration, accel-decel profiles, as well as a constant drive as the baseline case. The simulations were performed using the MOBILE software, a variable-density, incompressible fluid flow code. The advection algorithm employs a 3$^{rd}$-order, monotonicity-preserving upwind scheme, allowing the definition of sharp interfaces in the flow, while pressure convergence is accelerated by the use of a multi-grid scheme. The simulations are initialized with two classes of perturbations: narrow-band, short-wavelength modes and broadband with long-wavelength modes. The effect of initial amplitudes on the perturbations is investigated under the variable drive conditions. The acceleration profiles are capable of producing stages of ``demixing,'' useful in validating turbulence models of RTI.

Authors

  • Praveen Ramaprabhu

    University of North Carolina, Charlotte

  • Andrew Lawrie

    LMFA, Ecole Centrale de Lyon

  • Karthik Muthuraman

    University of North Carolina, Charlotte