Interaction of Ion-Concentration Shock Waves in Microfluidics
ORAL
Abstract
Electrophoresis based separation techniques, such as capillary electrophoresis and isotachophoresis (ITP), are routinely used in microfluidics to separate ionic species from complex mixtures. Nonlinearities in these electrophoretic processes can result in formation of shock and rarefaction waves. We here focus on shock waves which form in ITP between regions of high and low mobility ions. Depending on the charge of ions, these shocks can propagate either towards anode or cathode, and may interact with each other. We here demonstrate simultaneous anionic and cationic ITP process, in which shock waves approach each other and then interact. Using simulations and experimental visualizations, we show that the interaction of these shock waves can modify the electrophoretic conditions and result in formation of new shock and rarefaction waves. We show two applications where we use shock interaction to couple different electrophoretic processes: (i) where we first preconcentrate DNA fragments in anionic ITP and then use shock interaction to initiate DNA separation, and (ii) where we use shock interaction to elongate ITP zones for higher sensitivity.
–
Authors
-
Supreet S. Bahga
Stanford University
-
Robert D. Chambers
Stanford University
-
Juan G. Santiago
Stanford University