Measuring Heart Filling Propagation Velocity using the Cross Wavelet Transform

ORAL

Abstract

During early diastole, a pressure gradient is formed across the mitral valve as the left ventricle (LV) relaxes, forcing blood from the left atrium into the LV. This process generates a rapid filling wave and creates an unsteady flow environment within the LV. A continuous wavelet transform is capable of dealing with non-stationary and noisy signals and is therefore ideal for measuring the wave speed of the early diastole rapid filling wave. This wave speed, or propagation velocity (Vp), is used clinically to evaluate diastolic function and is conventionally measured from a Color M-Mode (CMM) echocardiogram. A CMM scan gives a spatiotemporal map of the blood velocity in the left ventricle and is used to visualize flow patterns and manually measure the Vp. In this work, a moving cross wavelet transform is used to measure the phase shift between consecutive time steps in a CMM echocardiogram, providing a more robust and repeatable measurement of Vp, less sensitive to noise, aliasing boundaries, and user inputs.

Authors

  • Casandra Niebel

    Virginia Tech

  • Takahiro Ohara

    Wake Forest University Baptist Medical Center

  • Pavlos Vlachos

    Department of Mechanical Engineering, Virginia Tech, Virginia Tech, Department of Mechanical Engineering, Virginia Tech., Blacksburg VA, USA, Virginia Tech Department of Mechanical Engineering, VPISU, Virginia Polytechnic Institute and State University

  • William Little

    Wake Forest University Baptist Medical Center, Wake Forest University School of Medicine