Visualizing the effects due to a wind turbine in a stratified turbulent boundary layer

ORAL

Abstract

As sustainable technologies and energy generation become more prolific, the need for larger wind farms becomes highly evident. It has been hypothesized that the behavior of heat and moisture transfer between the air and the ground is altered in the wakes of wind turbines. An experimental study at the Complex Boundary-layer and Wind Energy Based (CoBWEB) wind tunnel in Portland State University is performed to visualize the effects of these rotating structures under stratified conditions, thus modeling environments observed by a wind turbine array. A Schlieren technique is applied to study the interaction between the turbulent thermal boundary layer and the wind turbine. The Schlieren system employed here captures the temperature differences between the heat supplied through the floor of the wind tunnel and the air stream to image focal planes in upstream and downstream positions of a wind turbine. The data collected from this study demonstrates observable differences and effects due to the presence of the wind turbine.

Authors

  • Nicholas Hamilton

    Portland State University

  • Raul Bayoan Cal

    PSU, Portland State University