Numerical and experimental study of Newtonian and non-Newtonian flow in a spiral viscous pump

ORAL

Abstract

The need to transport small volumes of viscous media is a vital part of microfluidic devices vital to applications in biotechnology, chemistry and electronics. A novel Archimedian viscous micropump was developed in an attempt to achieve precise and accurate delivery of fluid in a robust and industrially viable package. The pump consists of a two-disc system, where one is patterned with a spiral rectangular channel of variable width and the other is smooth and has a rate of rotation \( \Omega \) in order to pump the fluid. The width of the channel is variable along its length in order to achieve a constant local Reynolds number and avoid recirculation zones along the spiral, which is described $ r = a + b \theta ^{c} $, where \( r \) is the radius at the spiral centerline and \( \theta \) is the angle. Numerical and analytical studies of the proposed model will be presented, exhibiting a linear relationship between the flow \( Q \) and \( \Omega \). Results from experiments with a simplified prototype will also be presented supporting the analytical and numerical studies.

Authors

  • Gustaf M{\aa}rtensson

    Mydata Automation AB

  • Andreas Gustafsson

    Department of Mechanics, KTH