An integrative CFD model of lamprey swimming
ORAL
Abstract
Swimming due to sinusoidal body undulations is observed across the full spectrum of swimming organisms, from microscopic flagella to fish. These undulations are achieved due to internal force-generating mechanisms, which, in the case of lamprey are due to a wave of neural activation from head to tail which gives rise to a wave of muscle activation. These active forces are also mediated by passive structural forces. Here we present recent results on a computational model of a swimming lamprey that couples activation of discrete muscle segments, passive elastic forces, and a surrounding viscous, incompressible fluid. The fluid dynamics is modeled by the Navier-Stokes equations at appropriate Reynolds numbers, where the resulting flow field and vortex shedding may be measured.
–
Authors
-
Chia-yu Hsu
Tulane University
-
Tyler McMillen
California State University at Fullerton
-
Lisa Fauci
Tulane University