Regularization techniques for backward--in--time evolutionary PDE problems
ORAL
Abstract
Backward--in--time evolutionary PDE problems have applications in the recently--proposed retrograde data assimilation. We consider the terminal value problem for the Kuramoto--Sivashinsky equation (KSE) in a 1D periodic domain as our model system. The KSE, proposed as a model for interfacial and combustion phenomena, is also often adopted as a toy model for hydrodynamic turbulence because of its multiscale and chaotic dynamics. Backward--in--time problems are typical examples of ill-posed problem, where disturbances are amplified exponentially during the backward march. Regularization is required to solve such problems efficiently and we consider approaches in which the original ill--posed problem is approximated with a less ill--posed problem obtained by adding a regularization term to the original equation. While such techniques are relatively well--understood for linear problems, they less understood in the present nonlinear setting. We consider regularization terms with fixed magnitudes and also explore a novel approach in which these magnitudes are adapted dynamically using simple concepts from the Control Theory.
–
Authors
-
Jonathan Gustafsson
McMaster University
-
Bartosz Protas
McMaster University