Effect of Swirl on Flickering Motion of Diffusion Flame
POSTER
Abstract
The buoyancy-induced oscillation is referred to as the so-called flame flickering and its dynamics are important when revealing mechanism of flame oscillations encountered in some combustion systems. Many aspects of flame oscillation / buoyancy coupling have been extensively explored, but the effect of swirling flow on buoyancy-induced flame flickering has yet to be elucidated. The purpose of the present study is to investigate how the buoyancy-induced flame flickering motion is altered by swirl, using a rotating Bunsen burner. The rotating burner tube (Diameter of the burner tube D$_0$ is 10 mm) is vertically supported by bearings, and rotated by a DC motor through a pulley and belt unit. The fuel injection velocity U (= volume flow rate / cross-sectional area of the burner tube) is varied from 0.1 to 0.3 m/s. The rotational speed of the burner tube N is varied up to 2000 rpm. Variations in the flame motion, oscillation frequency, and flame height as a function of burner rotation rate are presented in detail.
Authors
-
Hiroshi Gotoda
Department of Mechanical Engineering, Ritsumeikan University
-
Keng Hoo Chuah
Department of Mechanical Engineering, University of Kentucky
-
Genichiro Kushida
Department of Mechanical Engineering, Aichi Institute of Technology